Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01073
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/20248601073
Published online 12 January 2024
  • S. Praharaj, J. H. Han, and S. Hawken, “Innovative Civic Engagement and Digital Urban Infrastructure: Lessons from 100 Smart Cities Mission in India,” Procedia Eng, vol. 180, pp. 1423–1432, 2017, doi: 10.1016/j.proeng.2017.04.305. [CrossRef] [Google Scholar]
  • I. Matysiak and D. J. Peters, “Conditions facilitating aging in place in rural communities: The case of smart senior towns in Iowa,” J Rural Stud, vol. 97, pp. 507–516, Jan. 2023, doi: 10.1016/j.jrurstud.2023.01.005. [CrossRef] [Google Scholar]
  • A. Ferraris, Z. Belyaeva, and S. Bresciani, “The role of universities in the Smart City innovation: Multistakeholder integration and engagement perspectives,” J Bus Res, vol. 119, pp. 163–171, Oct. 2020, doi: 10.1016/j.jbusres.2018.12.010. [CrossRef] [Google Scholar]
  • A. T. Salaj and C. Senior, “Co-creators of wellbeing - Smarter engagement of older residents,” IFAC-PapersOnLine, vol. 54, no. 13, pp. 669–674, 2021, doi: 10.1016/j.ifacol.2021.10.528. [CrossRef] [Google Scholar]
  • S. Shayan and K. P. Kim, “Understanding correlations between social risks and sociodemographic factors in smart city development,” Sustain Cities Soc, vol. 89, Feb. 2023, doi: 10.1016/j.scs.2022.104320. [CrossRef] [Google Scholar]
  • T. C. Lim, B. Wilson, J. R. Grohs, and T. J. Pingel, “Community-engaged heat resilience planning: Lessons from a youth smart city STEM program,” Landsc Urban Plan, vol. 226, Oct. 2022, doi: 10.1016/j.landurbplan.2022.104497. [Google Scholar]
  • M. Marimuthu, C. D’Souza, and Y. Shukla, “Integrating community value into the adoption framework: A systematic review of conceptual research on participatory smart city applications,” Technol Forecast Soc Change, vol. 181, Aug. 2022, doi: 10.1016/j.techfore.2022.121779. [CrossRef] [Google Scholar]
  • M. Roach and J. Fritz, “Breaking barriers and building bridges: Increasing community engagement in program evaluation,” Eval Program Plann, vol. 90, Feb. 2022, doi: 10.1016/j.evalprogplan.2021.101997. [CrossRef] [PubMed] [Google Scholar]
  • T. Aditya, S. Ningrum, H. Nurasa, and I. Irawati, “Community needs for the digital divide on the smart city policy,” Heliyon, vol. 9, no. 8, Aug. 2023, doi: 10.1016/j.heliyon.2023.e18932. [Google Scholar]
  • I. Soutar et al., “Constructing practices of engagement with users and communities: Comparing emergent state-led smart local energy systems,” Energy Policy, vol. 171, Dec. 2022, doi: 10.1016/j.enpol.2022.113279. [CrossRef] [Google Scholar]
  • M. Salvia, F. Pietrapertosa, V. D’Alonzo, P. Clerici Maestosi, S. G. Simoes, and D. Reckien, “Key dimensions of cities’ engagement in the transition to climate neutrality,” J Environ Manage, vol. 344, Oct. 2023, doi: 10.1016/j.jenvman.2023.118519. [CrossRef] [PubMed] [Google Scholar]
  • C. Osborne, L. Mayo, and M. Bussey, “New frontiers in local government community engagement: Towards transformative place-based futures,” Futures, vol. 131, Aug. 2021, doi: 10.1016/j.futures.2021.102768. [CrossRef] [Google Scholar]
  • E. de Hoop, T. Moss, A. Smith, and E. Löffler, “Knowing and governing smart cities: Four cases of citizen engagement with digital urbanism,” Urban Governance, vol. 1, no. 2, pp. 61–71, Dec. 2021, doi: 10.1016/j.ugj.2021.12.008. [CrossRef] [Google Scholar]
  • S. Khan et al., “Risk communication and community engagement during COVID-19,” International Journal of Disaster Risk Reduction, vol. 74, May 2022, doi: 10.1016/j.ijdrr.2022.102903. [CrossRef] [PubMed] [Google Scholar]
  • K. Kowalik, “Social media as a distribution of emotions, not participation. Polish exploratory study in the EU smart city communication context,” Cities, vol. 108, Jan. 2021, doi: 10.1016/j.cities.2020.102995. [CrossRef] [Google Scholar]
  • C. Kim and J. Kim, “Spatial spillovers of sport industry clusters and community resilience: Bridging a spatial lens to building a smart tourism city,” Inf Process Manag, vol. 60, no. 3, May 2023, doi: 10.1016/j.ipm.2023.103266. [Google Scholar]
  • “Community Engagement in Smart Cities: A Social Network Analysis and Community Engagement Test - Search | ScienceDirect.com.” Accessed: Oct. 28, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Community%20Engagement%20in%20Smart%20Cities%3A%20A%20Social%20Network%20Analysis%20and%20Community%20Engagement%20Test [Google Scholar]
  • F. Manca et al., “Using digital social market applications to incentivise active travel: Empirical analysis of a smart city initiative,” Sustain Cities Soc, vol. 77, Feb. 2022, doi: 10.1016/j.scs.2021.103595. [CrossRef] [Google Scholar]
  • K. Jakobsen, M. Mikalsen, and G. Lilleng, “A literature review of smart technology domains with implications for research on smart rural communities,” Technol Soc, p. 102397, Oct. 2023, doi: 10.1016/J.TECHSOC.2023.102397. [Google Scholar]
  • H. Alizadeh and A. Sharifi, “Toward a societal smart city: Clarifying the social justice dimension of smart cities,” Sustain Cities Soc, vol. 95, Aug. 2023, doi: 10.1016/j.scs.2023.104612. [CrossRef] [Google Scholar]
  • N. Esmaeilpoorarabi, T. Yigitcanlar, M. Kamruzzaman, and M. Guaralda, “How can an enhanced community engagement with innovation districts be established? Evidence from Sydney, Melbourne and Brisbane,” Cities, vol. 96, Jan. 2020, doi: 10.1016/j.cities.2019.102430. [CrossRef] [Google Scholar]
  • M. A. Godinho, M. M. Ashraf, P. Narasimhan, and S. T. Liaw, “Understanding the convergence of social enterprise, digital health, and citizen engagement for co-producing integrated Person-Centred health services: A critical review and theoretical framework,” Int J Med Inform, vol. 178, Oct. 2023, doi: 10.1016/j.ijmedinf.2023.105174. [CrossRef] [PubMed] [Google Scholar]
  • L. Vasconcelos, J. Zahn, D. Trevisan, and J. Viterbo, “Engagement by Design Cards: A tool to involve designers and non-experts in the design of crowdsourcing initiatives,” Int J Hum Comput Stud, vol. 182, p. 103166, Feb. 2024, doi: 10.1016/J.IJHCS.2023.103166. [CrossRef] [Google Scholar]
  • C. Parker, M. Tomitsch, and J. Fredericks, “Smart engagement for smart cities: Design patterns for digitally augmented, situated community engagement,” Shaping Smart for Better Cities: Rethinking and Shaping Relationships between Urban Space and Digital Technologies, pp. 177–200, Jan. 2020, doi: 10.1016/B978-0-12-818636-7.00010-X. [Google Scholar]
  • Z. Spicer, N. Goodman, and D. A. Wolfe, “How ‘smart’ are smart cities? Resident attitudes towards smart city design,” Cities, vol. 141, Oct. 2023, doi: 10.1016/j.cities.2023.104442. [CrossRef] [Google Scholar]
  • G. Deng and S. Fei, “Exploring the factors influencing online civic engagement in a smart city: The mediating roles of ICT self-efficacy and commitment to community,” Comput Human Behav, vol. 143, Jun. 2023, doi: 10.1016/j.chb.2023.107682. [CrossRef] [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • H. Bindu Katikala, T. Pavan Kumar, B. Manideep Reddy, B. V.V. Pavan Kumar, G. Ramana Murthy, and S. Dixit, “Design of half adder using integrated leakage power reduction techniques,” Mater Today Proc, vol. 69, pp. 576–581, Jan. 2022, doi: 10.1016/J.Matpr.2022.09.425. [CrossRef] [Google Scholar]
  • L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [PubMed] [Google Scholar]
  • J. Singh et al., “Computational parametric investigation of solar air heater with dimple roughness in S-shaped pattern,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01392-8. [Google Scholar]
  • H. D. Nguyen et al., “A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties,” Journal of Materials Research and Technology, vol. 18, pp. 4641–4661, May 2022, doi: 10.1016/J.JMRT.2022.04.055. [CrossRef] [Google Scholar]
  • P. Singh, T. Bishnoi, S. Dixit, K. Kumar, N. Ivanovich Vatin, and J. Singh, “Review on the Mechanical Properties and Performance of Permeable Concrete,” Lecture Notes in Mechanical Engineering, pp. 341–351, 2023, doi: 10.1007/978-981-19-4147-4_35. [Google Scholar]
  • G. Murali, S. R. Abid, K. Al-Lami, N. I. Vatin, S. Dixit, and R. Fediuk, “Pure and mixed- mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes,” Constr Build Mater, vol. 362, Jan. 2023, doi: 10.1016/J.Conbuildmat.2022.129696. [CrossRef] [Google Scholar]
  • Hao, S.Z., Zhou, D.I., Hussain, F., Liu, W.F., Su, J.Z., Wang, D.W., Wang, Q.P., Qi, Z.M., Singh, C. and Trukhanov, S., 2020. Structure, spectral analysis and microwave dielectric properties of novel x (NaBi) 0.5 MoO4-(1-x) Bi2/3MoO4 (x= 0.2∼ 0.8) ceramics with low sintering temperatures. Journal of the European Ceramic Society, 40(10), pp.3569-3576. [CrossRef] [Google Scholar]
  • 75. Dar, S.A., Sharma, R., Srivastava, V. and Sakalle, U.K., 2019. Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba 2 InTaO 6. RSC advances, 9(17), pp.9522-9532. [CrossRef] [PubMed] [Google Scholar]
  • 76. Singh, J.I.P., Dhawan, V., Singh, S. and Jangid, K., 2017. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials today: proceedings, 4(2), pp.2793-2799. [CrossRef] [Google Scholar]
  • 77. Kaur, T., Kumar, S., Bhat, B.H., Want, B. and Srivastava, A.K., 2015. Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Applied Physics A, 119, pp.1531-1540. [CrossRef] [Google Scholar]
  • 78. Patel, S., 2012. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Reviews in Environmental Science and Bio/Technology, 11, pp.365-380. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.