Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01082
Number of page(s) 10
Published online 12 January 2024
  • S. E. Bibri, “The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability,” Sustain Cities Soc, vol. 38, pp. 230–253, Apr. 2018, doi: 10.1016/j.scs.2017.12.034. [CrossRef] [Google Scholar]
  • F. Yao and Y. Wang, “Towards resilient and smart cities: A real-time urban analytical and geo-visual system for social media streaming data,” Sustain Cities Soc, vol. 63, Dec. 2020, doi: 10.1016/j.scs.2020.102448. [Google Scholar]
  • P. Kaur, “Internet of things (IoT) and big data analytics (BDA) in healthcare,” Digital Transformation in Healthcare in Post-COVID-19 Times, pp. 45–57, Jan. 2023, doi: 10.1016/B978-0-323-98353-2.00015-0. [Google Scholar]
  • M. Arfanuzzaman, “Harnessing artificial intelligence and big data for SDGs and prosperous urban future in South Asia,” Environmental and Sustainability Indicators, vol. 11, Sep. 2021, doi: 10.1016/j.indic.2021.100127. [CrossRef] [Google Scholar]
  • V. Jaiswal, P. Saurabh, U. K. Lilhore, M. Pathak, S. Simaiya, and S. Dalal, “A breast cancer risk predication and classification model with ensemble learning and big data fusion,” Decision Analytics Journal, vol. 8, p. 100298, Sep. 2023, doi: 10.1016/j.dajour.2023.100298. [CrossRef] [Google Scholar]
  • M. Fugini, J. Finocchi, and P. Locatelli, “A Big Data Analytics Architecture for Smart Cities and Smart Companies,” Big Data Research, vol. 24, May 2021, doi: 10.1016/j.bdr.2021.100192. [CrossRef] [Google Scholar]
  • S. Ben Atitallah, M. Driss, W. Boulila, and H. Ben Ghezala, “Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions,” Comput Sci Rev, vol. 38, Nov. 2020, doi: 10.1016/j.cosrev.2020.100303. [PubMed] [Google Scholar]
  • L. Tamym, L. Benyoucef, A. Nait Sidi Moh, and M. D. El Ouadghiri, “Big data analytics-based approach for robust, flexible and sustainable collaborative networked enterprises,” Advanced Engineering Informatics, vol. 55, Jan. 2023, doi: 10.1016/j.aei.2023.101873. [CrossRef] [Google Scholar]
  • “Leveraging Big Data Analytics for Urban Planning: A Study Using the Big Data Analytics Efficiency Test - Search |” Accessed: Oct. 27, 2023. [Online]. Available: [Google Scholar]
  • C. Ma, M. Zhao, and Y. Zhao, “An overview of Hadoop applications in transportation big data,” Journal of Traffic and Transportation Engineering (English Edition), 2023, doi: 10.1016/j.jtte.2023.05.003. [Google Scholar]
  • D. Bianchini, V. De Antonellis, and M. Garda, “A big data exploration approach to exploit in-vehicle data for smart road maintenance,” Future Generation Computer Systems, vol. 149, pp. 701–716, Dec. 2023, doi: 10.1016/j.future.2023.08.004. [CrossRef] [Google Scholar]
  • R. El-Haddadeh, M. Osmani, N. Hindi, and A. Fadlalla, “Value creation for realising the sustainable development goals: Fostering organisational adoption of big data analytics,” J Bus Res, vol. 131, pp. 402–410, Jul. 2021, doi: 10.1016/j.jbusres.2020.10.066. [CrossRef] [Google Scholar]
  • Y. T. Chen, E. W. Sun, M. F. Chang, and Y. B. Lin, “Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0,” Int J Prod Econ, vol. 238, Aug. 2021, doi: 10.1016/j.ijpe.2021.108157. [Google Scholar]
  • N. Mostafa, H. S. M. Ramadan, and O. Elfarouk, “Renewable energy management in smart grids by using big data analytics and machine learning,” Machine Learning with Applications, vol. 9, p. 100363, Sep. 2022, doi: 10.1016/j.mlwa.2022.100363. [CrossRef] [Google Scholar]
  • R. D’Alberto and H. Giudici, “A sustainable smart mobility? Opportunities and challenges from a big data use perspective,” Sustainable Futures, vol. 6, Dec. 2023, doi: 10.1016/j.sftr.2023.100118. [Google Scholar]
  • J. Liu, Y. Yu, P. Chen, B. Y. Chen, L. Chen, and R. Chen, “Facilitating urban tourism governance with crowdsourced big data: A framework based on Shenzhen and Jiangmen, China,” International Journal of Applied Earth Observation and Geoinformation, vol. 124, Nov. 2023, doi: 10.1016/j.jag.2023.103509. [Google Scholar]
  • “Determinants of the adoption of big data analytics in business consulting service: a survey of multinational and indigenous consulting firms,” Transnational Corporations Review, vol. 15, no. 2, pp. 1–20, Jun. 2023, doi: 10.1016/J.TNCR.2023.09.001. [Google Scholar]
  • C. Bachechi, L. Po, and F. Rollo, “Big Data Analytics and Visualization in Traffic Monitoring,” Big Data Research, vol. 27, Feb. 2022, doi: 10.1016/j.bdr.2021.100292. [CrossRef] [Google Scholar]
  • M. Koot, M. R. K. Mes, and M. E. Iacob, “A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics,” Comput Ind Eng, vol. 154, Apr. 2021, doi: 10.1016/j.cie.2020.107076. [CrossRef] [Google Scholar]
  • D. K. Pandey, A. I. Hunjra, R. Bhaskar, and M. A. S. Al-Faryan, “Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022,” Resources Policy, vol. 86, Oct. 2023, doi: 10.1016/j.resourpol.2023.104250. [CrossRef] [Google Scholar]
  • C. Angheloiu and M. Tennant, “Urban futures: Systemic or system changing interventions? A literature review using Meadows’ leverage points as analytical framework,” Cities, vol. 104, Sep. 2020, doi: 10.1016/j.cities.2020.102808. [CrossRef] [Google Scholar]
  • F. Li, T. Yigitcanlar, M. Nepal, K. Nguyen, and F. Dur, “Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework,” Sustain Cities Soc, vol. 96, Sep. 2023, doi: 10.1016/j.scs.2023.104653. [Google Scholar]
  • Y. Gao, Z. Wang, K. Wang, R. Zhang, and Y. Lu, “Effect of big data on enterprise financialization: Evidence from China’s SMEs,” Technol Soc, vol. 75, Nov. 2023, doi: 10.1016/j.techsoc.2023.102351. [Google Scholar]
  • D. Zhang, L. G. Pee, S. L. Pan, and L. Cui, “Big data analytics, resource orchestration, and digital sustainability: A case study of smart city development,” Gov Inf Q, vol. 39, no. 1, Jan. 2022, doi: 10.1016/j.giq.2021.101626. [Google Scholar]
  • H. Yu, R. Zhang, and C. Kim, “Intelligent analysis system of college students’ employment and entrepreneurship situation: Big data and artificial intelligence-driven approach,” Computers and Electrical Engineering, vol. 110, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108823. [Google Scholar]
  • A. T. Chatfield and C. G. Reddick, “Customer agility and responsiveness through big data analytics for public value creation: A case study of Houston 311 on-demand services,” Gov Inf Q, vol. 35, no. 2, pp. 336–347, Apr. 2018, doi: 10.1016/j.giq.2017.11.002. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  • M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
  • M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  • M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
  • M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • G. Ghangas, S. Singhal, S. Dixit, V. Goyat, and S. Kadiyan, “Mathematical modeling and optimization of friction stir welding process parameters for armor-grade aluminium alloy,” International Journal on Interactive Design and Manufacturing, 2022, doi: 10.1007/S12008-022-01000-1. [Google Scholar]
  • G. Murali, S. R. Abid, K. Al-Lami, N. I. Vatin, S. Dixit, and R. Fediuk, “Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes,” Constr Build Mater, vol. 362, Jan. 2023, doi: 10.1016/J.CONBUILDMAT.2022.129696. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [PubMed] [Google Scholar]
  • Mahajan, N., Rawal, S., Verma, M., Poddar, M. and Alok, S., 2013. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), pp.185-192. [CrossRef] [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Turchenko, V.A., 2021. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Materials Today Chemistry, 20, p.100460. [CrossRef] [Google Scholar]
  • Siddique, A., Kandpal, G. and Kumar, P., 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), pp.1655-1659. [CrossRef] [Google Scholar]
  • Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. [CrossRef] [Google Scholar]
  • Akhtar, N. and Bansal, J.G., 2017. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), pp.328-339. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.