Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01083
Number of page(s) 9
Published online 12 January 2024
  • “Energy Efficiency Assessment in Smart Homes: A Comparative Study of Energy Efficiency Tests - Search |” Accessed: Oct. 27, 2023. [Online]. Available: [Google Scholar]
  • Y. Himeur et al., “Techno-economic assessment of building energy efficiency systems using behavioral change: A case study of an edge-based micro-moments solution,” J Clean Prod, vol. 331, Jan. 2022, doi: 10.1016/j.jclepro.2021.129786. [CrossRef] [Google Scholar]
  • R. Liang et al., “Wireless Water Consumption Sensing System for Building Energy Efficiency: A Visual-based Approach with Self-Powered Operation,” Energy Build, p. 113584, Oct. 2023, doi: 10.1016/J.ENBUILD.2023.113584. [Google Scholar]
  • D. Kumar, S. K. Sood, and K. S. Rawat, “Empowering elderly care with intelligent IoT-Driven smart toilets for home-based infectious health monitoring,” Artif Intell Med, vol. 144, Oct. 2023, doi: 10.1016/j.artmed.2023.102666. [CrossRef] [PubMed] [Google Scholar]
  • D. Tzani, V. Stavrakas, M. Santini, S. Thomas, J. Rosenow, and A. Flamos, “Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes,” Renewable and Sustainable Energy Reviews, vol. 158, Apr. 2022, doi: 10.1016/j.rser.2022.112162. [CrossRef] [Google Scholar]
  • C. P. Paneru and A. K. M. Tarigan, “Reviewing the impacts of smart energy applications on energy behaviours in Norwegian households,” Renewable and Sustainable Energy Reviews, vol. 183, Sep. 2023, doi: 10.1016/j.rser.2023.113511. [CrossRef] [Google Scholar]
  • A. Nazir, A. K. Shaikh, A. S. Shah, and A. Khalil, “Forecasting energy consumption demand of customers in smart grid using Temporal Fusion Transformer (TFT),” Results in Engineering, vol. 17, Mar. 2023, doi: 10.1016/j.rineng.2023.100888. [CrossRef] [Google Scholar]
  • V. Apostolopoulos, P. Giourka, G. Martinopoulos, K. Angelakoglou, K. Kourtzanidis, and N. Nikolopoulos, “Smart readiness indicator evaluation and cost estimation of smart retrofitting scenarios - A comparative case- study in European residential buildings,” Sustain Cities Soc, vol. 82, Jul. 2022, doi: 10.1016/j.scs.2022.103921. [CrossRef] [Google Scholar]
  • H. Xu, Y. He, X. Sun, J. He, and Q. Xu, “Prediction of thermal energy inside smart homes using IoT and classifier ensemble techniques,” Comput Commun, vol. 151, pp. 581–589, Feb. 2020, doi: 10.1016/j.comcom.2019.12.020. [CrossRef] [Google Scholar]
  • T. Gronier, E. Franquet, and S. Gibout, “Platform for transverse evaluation of control strategies for multi- energy smart grids,” Smart Energy, vol. 7, Aug. 2022, doi: 10.1016/j.segy.2022.100079. [CrossRef] [Google Scholar]
  • R. V. Siva Balan et al., “Development of smart energy monitoring using NB-IOT and cloud,” Measurement: Sensors, vol. 29, Oct. 2023, doi: 10.1016/j.measen.2023.100884. [CrossRef] [Google Scholar]
  • S. Xiong, Y. Li, Q. Li, Z. Ye, and S. Pouramini, “Energy consumption prediction by modified fish migration optimization algorithm: City single-family homes,” Appl Energy, vol. 353, Jan. 2024, doi: 10.1016/j.apenergy.2023.122065. [Google Scholar]
  • P. Pei, Z. Chen, and Y. Wang, “Production analytics for renewable energy portfolio management: A comparative study of active and passive strategies in digital twin,” Solar Energy, vol. 262, Sep. 2023, doi: 10.1016/j.solener.2023.111923. [Google Scholar]
  • R. Selvaraj, V. M. Kuthadi, and S. Baskar, “Smart building energy management and monitoring system based on artificial intelligence in smart city,” Sustainable Energy Technologies and Assessments, vol. 56, Mar. 2023, doi: 10.1016/j.seta.2023.103090. [CrossRef] [Google Scholar]
  • J. Liao, D. Yang, N. I. Arshad, K. Venkatachalam, and A. Ahmadian, “MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach,” Sustain Cities Soc, vol. 98, Nov. 2023, doi: 10.1016/j.scs.2023.104850. [CrossRef] [Google Scholar]
  • A. N. Tak, B. Becerik-Gerber, L. Soibelman, and G. Lucas, “A framework for investigating the acceptance of smart home technologies: Findings for residential smart HVAC systems,” Build Environ, vol. 245, Nov. 2023, doi: 10.1016/j.buildenv.2023.110935. [Google Scholar]
  • S. Ayub et al., “Analysis of energy management schemes for renewable-energy-based smart homes against the backdrop of COVID-19,” Sustainable Energy Technologies and Assessments, vol. 52, Aug. 2022, doi: 10.1016/j.seta.2022.102136. [CrossRef] [Google Scholar]
  • D. Wu, W. Feng, T. Li, and Z. Yang, “Evaluating the intelligence capability of smart homes: A conceptual modeling approach,” Data Knowl Eng, vol. 148, Nov. 2023, doi: 10.1016/j.datak.2023.102218. [Google Scholar]
  • J. P. Astudillo León, C. L. Duenas Santos, A. M. Mezher, J. Cárdenas Barrera, J. Meng, and E. Castillo Guerra, “Exploring the potential, limitations, and future directions of wireless technologies in smart grid networks: A comparative analysis,” Computer Networks, vol. 235, p. 109956, Nov. 2023, doi: 10.1016/j.comnet.2023.109956. [CrossRef] [Google Scholar]
  • J. A. Gordon, N. Balta-Ozkan, and S. A. Nabavi, “Divergent consumer preferences and visions for cooking and heating technologies in the United Kingdom: Make our homes clean, safe, warm and smart!,” Energy Res Soc Sci, vol. 104, Oct. 2023, doi: 10.1016/j.erss.2023.103204. [CrossRef] [Google Scholar]
  • A. Bhardwaj, K. Kaushik, S. Bharany, and S. Kim, “Forensic analysis and security assessment of IoT camera firmware for smart homes,” Egyptian Informatics Journal, vol. 24, no. 4, p. 100409, Dec. 2023, doi: 10.1016/J.EIJ.2023.100409. [CrossRef] [Google Scholar]
  • R. Vadruccio, C. Siragusa, and A. Tumino, “Increasing energy efficiency in Smart Building through Internet of Things retrofitting intervention,” Procedia Comput Sci, vol. 219, pp. 263–270, 2023, doi: 10.1016/j.procs.2023.01.289. [CrossRef] [Google Scholar]
  • A. O. Ali, M. R. Elmarghany, M. M. Abdelsalam, M. N. Sabry, and A. M. Hamed, “Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review,” J Energy Storage, vol. 50, Jun. 2022, doi: 10.1016/j.est.2022.104609. [Google Scholar]
  • M. Z. Fakhar, E. Yalcin, and A. Bilge, “A survey of smart home energy conservation techniques,” Expert Syst Appl, vol. 213, Mar. 2023, doi: 10.1016/j.eswa.2022.118974. [CrossRef] [Google Scholar]
  • A. N. Khan, A. Rizwan, R. Ahmad, and D. H. Kim, “An OCF-IoTivity enabled smart-home optimal indoor environment control system for energy and comfort optimization,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100712. [Google Scholar]
  • S. Balavignesh, C. Kumar, S. Ueda, and T. Senjyu, “Optimization-based optimal energy management system for smart home in smart grid,” Energy Reports, vol. 10, pp. 3733–3756, Nov. 2023, doi: 10.1016/J.EGYR.2023.10.037. [CrossRef] [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco- Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
  • M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
  • G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
  • S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  • Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
  • K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • G. Ghangas, S. Singhal, S. Dixit, V. Goyat, and S. Kadiyan, “Mathematical modeling and optimization of friction stir welding process parameters for armor-grade aluminium alloy,” International Journal on Interactive Design and Manufacturing, 2022, doi: 10.1007/S12008-022-01000-1. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • Siddique, A., Kandpal, G. and Kumar, P., 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), pp.1655-1659. [CrossRef] [Google Scholar]
  • Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. [Google Scholar]
  • Akhtar, N. and Bansal, J.G., 2017. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), pp.328-339. [CrossRef] [PubMed] [Google Scholar]
  • Mahajan, N., Rawal, S., Verma, M., Poddar, M. and Alok, S., 2013. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), pp.185-192. [CrossRef] [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Turchenko, V.A., 2021. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Materials Today Chemistry, 20, p.100460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.