Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01088
Number of page(s) 8
DOI https://doi.org/10.1051/bioconf/20248601088
Published online 12 January 2024
  • S. Polymeni, E. Athanasakis, G. Spanos, K. Votis, and D. Tzovaras, “IoT-based prediction models in the environmental context: A systematic Literature Review,” Internet of Things (Netherlands), vol. 20, Nov. 2022, doi: 10.1016/j.iot.2022.100612. [Google Scholar]
  • “Performance Evaluation of IoT Sensors in Urban Air Quality Monitoring: Insights from the IoT Sensor Performance Test - Search | ScienceDirect.com.” Accessed: Oct. 28, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Performance%20Evaluation%20of%20IoT%20Sensors%20in%20Urban%20Air%20Quality%20Monitoring%3A%20Insights%20from%20the%20IoT%20Sensor%20Performance%20Test [Google Scholar]
  • R. Kumar and N. Agrawal, “Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog–Cloud based architectural frameworks : A survey on current state and research challenges,” J Ind Inf Integr, vol. 35, Oct. 2023, doi: 10.1016/j.jii.2023.100504. [Google Scholar]
  • A. Almalawi et al., “An IoT based system for magnify air pollution monitoring and prognosis using hybrid artificial intelligence technique,” Environ Res, vol. 206, Apr. 2022, doi: 10.1016/j.envres.2021.112576. [CrossRef] [PubMed] [Google Scholar]
  • A. V. Turukmane, N. Alhebaishi, A. M. Alshareef, O. M. Mirza, A. Bhardwaj, and B. Singh, “Multispectral image analysis for monitoring by IoT based wireless communication using secure locations protocol and classification by deep learning techniques,” Optik (Stuttg), vol. 271, Dec. 2022, doi: 10.1016/j.ijleo.2022.170122. [Google Scholar]
  • W. A. Jabbar, T. Subramaniam, A. E. Ong, M. I. Shu’Ib, W. Wu, and M. A. de Oliveira, “LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring,” Internet of Things (Netherlands), vol. 19, Aug. 2022, doi: 10.1016/j.iot.2022.100540. [Google Scholar]
  • V. Moudgil, K. Hewage, S. A. Hussain, and R. Sadiq, “Integration of IoT in building energy infrastructure: A critical review on challenges and solutions,” Renewable and Sustainable Energy Reviews, vol. 174, Mar. 2023, doi: 10.1016/j.rser.2022.113121. [CrossRef] [Google Scholar]
  • K. Raghavendar, I. Batra, and A. Malik, “A robust resource allocation model for optimizing data skew and consumption rate in cloud-based IoT environments,” Decision Analytics Journal, vol. 7, Jun. 2023, doi: 10.1016/j.dajour.2023.100200. [CrossRef] [Google Scholar]
  • B. Nemade and D. Shah, “An IoT based efficient Air pollution prediction system using DLMNN classifier,” Physics and Chemistry of the Earth, vol. 128, Dec. 2022, doi: 10.1016/j.pce.2022.103242. [Google Scholar]
  • R. R. Shamshiri et al., “Model-based evaluation of greenhouse microclimate using IoT-Sensor data fusion for energy efficient crop production,” J Clean Prod, vol. 263, Aug. 2020, doi: 10.1016/j.jclepro.2020.121303. [CrossRef] [Google Scholar]
  • S. Mathur, A. Kalla, G. Gür, M. K. Bohra, and M. Liyanage, “A Survey on Role of Blockchain for IoT: Applications and Technical Aspects,” Computer Networks, vol. 227, May 2023, doi: 10.1016/j.comnet.2023.109726. [CrossRef] [Google Scholar]
  • C. A. Hernández-Morales, J. M. Luna-Rivera, and R. Perez-Jimenez, “Design and deployment of a practical IoT- based monitoring system for protected cultivations,” Comput Commun, vol. 186, pp. 51–64, Mar. 2022, doi: 10.1016/j.comcom.2022.01.009. [CrossRef] [Google Scholar]
  • S. Si-Mohammed, T. Begin, I. Guérin Lassous, and P. Vicat-Blanc, “HINTS: A methodology for IoT network technology and configuration decision,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100678. [Google Scholar]
  • J. Á. Martín-Baos, L. Rodriguez-Benitez, R. García-Ródenas, and J. Liu, “IoT based monitoring of air quality and traffic using regression analysis,” Appl Soft Comput, vol. 115, Jan. 2022, doi: 10.1016/j.asoc.2021.108282. [Google Scholar]
  • K. Rastogi and D. Lohani, “Context-aware IoT-enabled framework to analyse and predict indoor air quality,” Intelligent Systems with Applications, vol. 16, Nov. 2022, doi: 10.1016/j.iswa.2022.200132. [CrossRef] [Google Scholar]
  • A. Pradhan and B. Unhelkar, “The role of IoT in smart cities: Challenges of air quality mass sensor technology for sustainable solutions,” Security and Privacy Issues in IoT Devices and Sensor Networks, pp. 285–307, Jan. 2020, doi: 10.1016/B978-0-12-821255-4.00013-4. [Google Scholar]
  • R. P. Meenaakshi Sundhari and K. Jaikumar, “IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring,” Comput Commun, vol. 150, pp. 226–234, Jan. 2020, doi: 10.1016/j.comcom.2019.11.032. [CrossRef] [Google Scholar]
  • W. Y. Chau et al., “AI-IoT integrated framework for tree tilt monitoring: A case study on tree failure in Hong Kong,” Agric For Meteorol, vol. 341, Oct. 2023, doi: 10.1016/j.agrformet.2023.109678. [Google Scholar]
  • S. De Vito, G. Di Francia, E. Esposito, S. Ferlito, F. Formisano, and E. Massera, “Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices,” Pattern Recognit Lett, vol. 136, pp. 264–271, Aug. 2020, doi: 10.1016/j.patrec.2020.04.032. [CrossRef] [Google Scholar]
  • A. Asha, R. Arunachalam, I. Poonguzhali, S. Urooj, and S. Alelyani, “Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm,” Measurement (Lond), vol. 210, Mar. 2023, doi: 10.1016/j.measurement.2023.112505. [Google Scholar]
  • M. I. Zakaria, W. A. Jabbar, and N. Sulaiman, “Development of a smart sensing unit for LoRaWAN-based IoT flood monitoring and warning system in catchment areas,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 249–261, Jan. 2023, doi: 10.1016/j.iotcps.2023.04.005. [CrossRef] [Google Scholar]
  • C. Prakash, L. P. Singh, A. Gupta, and S. K. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation,” Sens Actuators A Phys, vol. 362, Nov. 2023, doi: 10.1016/j.sna.2023.114605. [CrossRef] [Google Scholar]
  • X. Dai, W. Shang, J. Liu, M. Xue, and C. Wang, “Achieving better indoor air quality with IoT systems for future buildings: Opportunities and challenges,” Science of the Total Environment, vol. 895, Oct. 2023, doi: 10.1016/j.scitotenv.2023.164858. [Google Scholar]
  • C. Cândea, G. Cândea, and M. Staicu, “Impact of IoT and SoS in Enabling Smart Applications: A Study on Interconnectivity, Interoperability and Quality of Service,” Procedia Comput Sci, vol. 221, pp. 1226–1234, 2023, doi: 10.1016/j.procs.2023.08.110. [CrossRef] [Google Scholar]
  • F. Famá, J. N. Faria, and D. Portugal, “An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches,” Internet of Things (Netherlands), vol. 19, Aug. 2022, doi: 10.1016/j.iot.2022.100547. [Google Scholar]
  • G. K. Ijemaru, L. M. Ang, and K. P. Seng, “Transformation from IoT to IoV for waste management in smart cities,” Journal of Network and Computer Applications, vol. 204, Aug. 2022, doi: 10.1016/j.jnca.2022.103393. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • K. Kumar et al., “Breaking Barriers: Innovative Fabrication Processes for Nanostructured Materials and Nano Devices,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01197. [Google Scholar]
  • K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [PubMed] [Google Scholar]
  • K. Kumar et al., “Effect of Additive on Flowability and Compressibility of Fly Ash,” Lecture Notes in Mechanical Engineering, pp. 211–217, 2023, doi: 10.1007/978-981-19-4147-4_22. [Google Scholar]
  • D. Aghimien et al., “Barriers to Digital Technology Deployment in Value Management Practice,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060731. [CrossRef] [Google Scholar]
  • K. Kumar et al., “Comparative Analysis of Waste Materials for Their Potential Utilization in Green Concrete Applications,” Materials, vol. 15, no. 12, Jun. 2022, doi: 10.3390/MA15124180. [Google Scholar]
  • L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [PubMed] [Google Scholar]
  • A. Shukla et al., “Effects of Various Pseudomonas Bacteria Concentrations on the Strength and Durability Characteristics of Concrete,” Buildings, vol. 12, no. 7, Jul. 2022, doi: 10.3390/BUILDINGS12070993. [CrossRef] [Google Scholar]
  • C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [PubMed] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456-9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
  • Siddique, A., Kandpal, G. and Kumar, P., 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), pp.1655-1659. [CrossRef] [Google Scholar]
  • Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. [CrossRef] [Google Scholar]
  • Akhtar, N. and Bansal, J.G., 2017. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), pp.328-339. [CrossRef] [PubMed] [Google Scholar]
  • Mahajan, N., Rawal, S., Verma, M., Poddar, M. and Alok, S., 2013. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), pp.185-192. [CrossRef] [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Turchenko, V.A., 2021. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Materials Today Chemistry, 20, p.100460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.