Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01089
Number of page(s) 8
DOI https://doi.org/10.1051/bioconf/20248601089
Published online 12 January 2024
  • S. Zhou, S. T. Ng, Y. Yang, and J. F. Xu, “Integrating computer vision and traffic modeling for near-real-time signal timing optimization of multiple intersections,” Sustain Cities Soc, vol. 68, May 2021, doi: 10.1016/j.scs.2021.102775. [CrossRef] [Google Scholar]
  • M. Talal, K. N. Ramli, A. A. Zaidan, B. B. Zaidan, and F. Jumaa, “Review on car-following sensor based and data-generation mapping for safety and traffic management and road map toward ITS,” Vehicular Communications, vol. 25, Oct. 2020, doi: 10.1016/j.vehcom.2020.100280. [CrossRef] [Google Scholar]
  • A. Nadi, S. Sharma, J. W. C. van Lint, L. Tavasszy, and M. Snelder, “A data-driven traffic modeling for analyzing the impacts of a freight departure time shift policy,” Transp Res Part A Policy Pract, vol. 161, pp. 130–150, Jul. 2022, doi: 10.1016/j.tra.2022.05.008. [CrossRef] [Google Scholar]
  • T. Lehouillier, F. Soumis, J. Omer, and C. Allignol, “Measuring the interactions between air traffic control and flow management using a simulation-based framework,” Comput Ind Eng, vol. 99, pp. 269–279, Sep. 2016, doi: 10.1016/j.cie.2016.07.025. [CrossRef] [Google Scholar]
  • F. Zhang, J. Lu, X. Hu, and Q. Meng, “A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles,” Transportation Research Part B: Methodological, vol. 178, p. 102850, Dec. 2023, doi: 10.1016/J.TRB.2023.102850. [CrossRef] [Google Scholar]
  • C. W. F. Parsonson, J. L. Benjamin, and G. Zervas, “Traffic generation for benchmarking data centre networks,” Optical Switching and Networking, vol. 46, Nov. 2022, doi: 10.1016/j.osn.2022.100695. [Google Scholar]
  • “Data-Intensive Traffic Management: Real-Time Insights from the Traffic Management Simulation Test - Search| ScienceDirect.com.” Accessed: Oct. 28, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Data-Intensive%20Traffic%20Management%3A%20Real-Time%20Insights%20from%20the%20Traffic%20Management%20Simulation%20Test [Google Scholar]
  • X. Xin, Z. Yang, K. Liu, J. Zhang, and X. Wu, “Multi-stage and multi-topology analysis of ship traffic complexity for probabilistic collision detection,” Expert Syst Appl, vol. 213, Mar. 2023, doi: 10.1016/j.eswa.2022.118890. [Google Scholar]
  • X. Zhang, Y. Zheng, Z. Zhao, Y. Liu, M. Blumenstein, and J. Li, “Deep learning detection of anomalous patterns from bus trajectories for traffic insight analysis,” Knowl Based Syst, vol. 217, Apr. 2021, doi: 10.1016/j.knosys.2021.106833. [Google Scholar]
  • E. Kolla, V. Adamová, and P. Vertaľ, “Simulation-based reconstruction of traffic incidents from moving vehicle mono-camera,” Science and Justice, vol. 62, no. 1, pp. 94–109, Jan. 2022, doi: 10.1016/j.scijus.2021.11.001. [CrossRef] [Google Scholar]
  • V. Perifanis, N. Pavlidis, R. A. Koutsiamanis, and P. S. Efraimidis, “Federated learning for 5G base station traffic forecasting,” Computer Networks, vol. 235, Nov. 2023, doi: 10.1016/j.comnet.2023.109950. [CrossRef] [Google Scholar]
  • K. Lasri, Y. Ben Maissa, L. Echabbi, O. Iova, and F. Valois, “Probabilistic and distributed traffic control in LPWANs,” Ad Hoc Networks, vol. 143, Apr. 2023, doi: 10.1016/j.adhoc.2023.103121. [CrossRef] [Google Scholar]
  • A. Pell, A. Meingast, and O. Schauer, “Trends in Real-time Traffic Simulation,” Transportation Research Procedia, vol. 25, pp. 1477–1484, 2017, doi: 10.1016/j.trpro.2017.05.175. [CrossRef] [Google Scholar]
  • N. Faqir, C. Loqman, and J. Boumhidi, “Combined extreme learning machine and max pressure algorithms for traffic signal control,” Intelligent Systems with Applications, vol. 19, Sep. 2023, doi: 10.1016/j.iswa.2023.200255. [CrossRef] [Google Scholar]
  • T. Toliopoulos et al., “Sboing4Real: A real-time crowdsensing-based traffic management system,” J Parallel Distrib Comput, vol. 162, pp. 59–75, Apr. 2022, doi: 10.1016/j.jpdc.2022.01.017. [CrossRef] [Google Scholar]
  • S. J. Siddiqi, F. Naeem, S. Khan, K. S. Khan, and M. Tariq, “Towards AI-enabled traffic management in multipath TCP: A survey,” Comput Commun, vol. 181, pp. 412–427, Jan. 2022, doi: 10.1016/j.comcom.2021.09.030. [CrossRef] [Google Scholar]
  • S. Heshami and L. Kattan, “A stochastic microscopic based freeway traffic state and spatial-temporal pattern prediction in a connected vehicle environment,” Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, doi: 10.1080/15472450.2022.2130291. [Google Scholar]
  • D. G. Ramirez-Rios, L. K. Kalahasthi, and J. Holguín-Veras, “On-street parking for freight, services, and e- commerce traffic in US cities: A simulation model incorporating demand and duration,” Transp Res Part A Policy Pract, vol. 169, Mar. 2023, doi: 10.1016/j.tra.2023.103590. [Google Scholar]
  • X. Chen, X. Lin, Q. Meng, and M. Li, “Coordinated traffic control of urban networks with dynamic entrance holding for mixed CAV traffic,” Transp Res E Logist Transp Rev, vol. 178, Oct. 2023, doi: 10.1016/j.tre.2023.103264. [Google Scholar]
  • A. Li, M. Hansen, and B. Zou, “Traffic management and resource allocation for UAV-based parcel delivery in low-altitude urban space,” Transp Res Part C Emerg Technol, vol. 143, Oct. 2022, doi: 10.1016/j.trc.2022.103808. [Google Scholar]
  • Z. Wang, D. Delahaye, J. L. Farges, and S. Alam, “A quasi-dynamic air traffic assignment model for mitigating air traffic complexity and congestion for high-density UAM operations,” Transp Res Part C Emerg Technol, vol. 154, Sep. 2023, doi: 10.1016/j.trc.2023.104279. [CrossRef] [Google Scholar]
  • A. Mezentseva, F. J. Gracia, I. Silla, and M. Martínez-Córcoles, “The role of empowering leadership, safety culture and safety climate in the prediction of mindful organizing in an air traffic management company,” Saf Sci, vol. 168, Dec. 2023, doi: 10.1016/j.ssci.2023.106321. [CrossRef] [Google Scholar]
  • A. Ait Ouallane, A. Bakali, A. Bahnasse, S. Broumi, and M. Talea, “Fusion of engineering insights and emerging trends: Intelligent urban traffic management system,” Information Fusion, vol. 88, pp. 218–248, Dec. 2022, doi: 10.1016/j.inffus.2022.07.020. [CrossRef] [Google Scholar]
  • C. Manfletti, M. Guimarães, and C. Soares, “AI for space traffic management,” Journal of Space Safety Engineering, Sep. 2023, doi: 10.1016/j.jsse.2023.08.007. [Google Scholar]
  • M. Li, J. Mou, P. Chen, L. Chen, and P. H. A. J. M. van Gelder, “Real-time collision risk based safety management for vessel traffic in busy ports and waterways,” Ocean Coast Manag, vol. 234, Mar. 2023, doi: 10.1016/j.ocecoaman.2022.106471. [Google Scholar]
  • K. Kušić, R. Schumann, and E. Ivanjko, “A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics,” Advanced Engineering Informatics, vol. 55, Jan. 2023, doi: 10.1016/j.aei.2022.101858. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
  • M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [PubMed] [Google Scholar]
  • K. Kumar et al., “Effect of Additive on Flowability and Compressibility of Fly Ash,” Lecture Notes in Mechanical Engineering, pp. 211–217, 2023, doi: 10.1007/978-981-19-4147-4_22. [Google Scholar]
  • D. N. Nguyen, M. P. Dang, S. Dixit, and T. P. Dao, “A design approach of bonding head guiding platform for die to wafer hybrid bonding application using compliant mechanism,” International Journal on Interactive Design and Manufacturing, 2022, doi: 10.1007/S12008-022-01019-4. [Google Scholar]
  • D. Aghimien et al., “Barriers to Digital Technology Deployment in Value Management Practice,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060731. [CrossRef] [Google Scholar]
  • K. Kumar et al., “Comparative Analysis of Waste Materials for Their Potential Utilization in Green Concrete Applications,” Materials, vol. 15, no. 12, Jun. 2022, doi: 10.3390/MA15124180. [Google Scholar]
  • Siddique, A., Kandpal, G. and Kumar, P., 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), pp.1655-1659. [CrossRef] [Google Scholar]
  • Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. [CrossRef] [Google Scholar]
  • Akhtar, N. and Bansal, J.G., 2017. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), pp.328-339. [CrossRef] [PubMed] [Google Scholar]
  • Mahajan, N., Rawal, S., Verma, M., Poddar, M. and Alok, S., 2013. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), pp.185-192. [CrossRef] [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Turchenko, V.A., 2021. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Materials Today Chemistry, 20, p.100460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.