Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01090
Number of page(s) 8
Published online 12 January 2024
  • M. Ebni, S. M. Hosseini Bamakan, and Q. Qu, “Digital Twin based Smart Manufacturing; From Design to Simulation and Optimization Schema,” Procedia Comput Sci, vol. 221, pp. 1216–1225, 2023, doi: 10.1016/j.procs.2023.08.109. [CrossRef] [Google Scholar]
  • W. Li, L. Wang, Z. Ye, Y. Liu, and Y. Wang, “A dynamic combination algorithm based scenario construction theory for mine water-inrush accident multi-objective optimization,” Expert Syst Appl, vol. 238, Mar. 2024, doi: 10.1016/j.eswa.2023.121871. [Google Scholar]
  • W. K. Saad, I. Shayea, A. Alhammadi, M. M. Sheikh, and A. A. El-Saleh, “Handover and load balancing self- optimization models in 5G mobile networks,” Engineering Science and Technology, an International Journal, vol. 42, Jun. 2023, doi: 10.1016/j.jestch.2023.101418. [Google Scholar]
  • P. Jatinkumar Shah, T. Anagnostopoulos, A. Zaslavsky, and S. Behdad, “A stochastic optimization framework for planning of waste collection and value recovery operations in smart and sustainable cities,” Waste Management, vol. 78, pp. 104–114, Aug. 2018, doi: 10.1016/j.wasman.2018.05.019. [CrossRef] [Google Scholar]
  • P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, and J. L. Webber, “Towards green smart cities using Internet of Things and optimization algorithms: A systematic and bibliometric review,” Sustainable Computing: Informatics and Systems, vol. 36, Dec. 2022, doi: 10.1016/j.suscom.2022.100822. [Google Scholar]
  • X. Zhu, “Energy optimization of the configurable service portfolio for IoT systems,” Comput Commun, vol. 154, pp. 491–500, Mar. 2020, doi: 10.1016/j.comcom.2020.03.008. [CrossRef] [Google Scholar]
  • “Optimizing Waste Management through IoT and Analytics: A Case Study Using the Waste Management Optimization Test - Search |” Accessed: Oct. 28, 2023. [Online]. Available: [Google Scholar]
  • M. T. Munir, B. Li, and M. Naqvi, “Revolutionizing municipal solid waste management (MSWM) with machine learning as a clean resource: Opportunities, challenges and solutions,” Fuel, vol. 348, Sep. 2023, doi: 10.1016/j.fuel.2023.128548. [CrossRef] [Google Scholar]
  • A. D. Sakti et al., “Optimizing city-level centralized wastewater management system using machine learning and spatial network analysis,” Environ Technol Innov, vol. 32, Nov. 2023, doi: 10.1016/j.eti.2023.103360. [CrossRef] [Google Scholar]
  • M. Elnour et al., “Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities,” Renewable and Sustainable Energy Reviews, vol. 162, Jul. 2022, doi: 10.1016/j.rser.2022.112401. [CrossRef] [Google Scholar]
  • X. Wang, X. Mao, and H. Khodaei, “A multi-objective home energy management system based on internet of things and optimization algorithms,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101603. [CrossRef] [Google Scholar]
  • Z. Said et al., “Intelligent approaches for sustainable management and valorisation of food waste,” Bioresour Technol, vol. 377, Jun. 2023, doi: 10.1016/j.biortech.2023.128952. [CrossRef] [PubMed] [Google Scholar]
  • P. Mathur and S. Singh, “Analyze mathematical model for optimization of anaerobic digestion for treatment of waste water,” Mater Today Proc, vol. 62, pp. 5575–5582, Jan. 2022, doi: 10.1016/j.matpr.2022.04.606. [CrossRef] [Google Scholar]
  • K. Zaman et al., “Efficient power management optimization based on whale optimization algorithm and enhanced differential evolution,” Alexandria Engineering Journal, vol. 79, pp. 652–670, Sep. 2023, doi: 10.1016/j.aej.2023.08.045. [CrossRef] [Google Scholar]
  • S. N. Mousavi, M. G. Villarreal-Marroquín, M. Hajiaghaei-Keshteli, and N. R. Smith, “Data-driven prediction and optimization toward net-zero and positive-energy buildings: A systematic review,” Build Environ, vol. 242, Aug. 2023, doi: 10.1016/j.buildenv.2023.110578. [CrossRef] [Google Scholar]
  • X. Zhu, X. Zhang, P. Gong, and Y. Li, “A review of distributed energy system optimization for building decarbonization,” Journal of Building Engineering, vol. 73, Aug. 2023, doi: 10.1016/j.jobe.2023.106735. [Google Scholar]
  • A. Asha, R. Arunachalam, I. Poonguzhali, S. Urooj, and S. Alelyani, “Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm,” Measurement (Lond), vol. 210, Mar. 2023, doi: 10.1016/j.measurement.2023.112505. [Google Scholar]
  • P. K. Gopalakrishnan, J. Hall, and S. Behdad, “Cost analysis and optimization of Blockchain-based solid waste management traceability system,” Waste Management, vol. 120, pp. 594–607, Feb. 2021, doi: 10.1016/j.wasman.2020.10.027. [CrossRef] [Google Scholar]
  • M. H. Elkholy, M. Elymany, A. Yona, T. Senjyu, H. Takahashi, and M. Elsayed Lotfy, “Experimental validation of an AI-embedded FPGA-based Real-Time smart energy management system using Multi-Objective Reptile search algorithm and gorilla troops optimizer,” Energy Convers Manag, vol. 282, Apr. 2023, doi: 10.1016/j.enconman.2023.116860. [CrossRef] [Google Scholar]
  • G. K. Ijemaru, L. M. Ang, and K. P. Seng, “Transformation from IoT to IoV for waste management in smart cities,” Journal of Network and Computer Applications, vol. 204, Aug. 2022, doi: 10.1016/j.jnca.2022.103393. [CrossRef] [Google Scholar]
  • S. Kumar et al., “An optimized intelligent computational security model for interconnected blockchain-IoT system & cities,” Ad Hoc Networks, p. 103299, Dec. 2023, doi: 10.1016/j.adhoc.2023.103299. [Google Scholar]
  • R. Kumar, V. U., and V. Tiwari, “Optimized traffic engineering in Software Defined Wireless Network based IoT (SDWN-IoT): State-of-the-art, research opportunities and challenges,” Comput Sci Rev, vol. 49, Aug. 2023, doi: 10.1016/j.cosrev.2023.100572. [CrossRef] [Google Scholar]
  • C. Maraveas, D. Piromalis, K. G. Arvanitis, T. Bartzanas, and D. Loukatos, “Applications of IoT for optimized greenhouse environment and resources management,” Comput Electron Agric, vol. 198, Jul. 2022, doi: 10.1016/j.compag.2022.106993. [CrossRef] [Google Scholar]
  • M. W. Hasan, “Building an IoT temperature and humidity forecasting model based on long short-term memory (LSTM) with improved whale optimization algorithm,” Memories - Materials, Devices, Circuits and Systems, vol. 6, p. 100086, Dec. 2023, doi: 10.1016/J.MEMORI.2023.100086. [CrossRef] [Google Scholar]
  • K. Raghavendar, I. Batra, and A. Malik, “A robust resource allocation model for optimizing data skew and consumption rate in cloud-based IoT environments,” Decision Analytics Journal, vol. 7, Jun. 2023, doi: 10.1016/j.dajour.2023.100200. [CrossRef] [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • G. Ghangas, S. Singhal, S. Dixit, V. Goyat, and S. Kadiyan, “Mathematical modeling and optimization of friction stir welding process parameters for armor-grade aluminium alloy,” International Journal on Interactive Design and Manufacturing, 2022, doi: 10.1007/S12008-022-01000-1. [Google Scholar]
  • G. Murali, S. R. Abid, K. Al-Lami, N. I. Vatin, S. Dixit, and R. Fediuk, “Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes,” Constr Build Mater, vol. 362, Jan. 2023, doi: 10.1016/J.CONBUILDMAT.2022.129696. [CrossRef] [Google Scholar]
  • R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [PubMed] [Google Scholar]
  • K. Kumar et al., “Effect of Additive on Flowability and Compressibility of Fly Ash,” Lecture Notes in Mechanical Engineering, pp. 211–217, 2023, doi: 10.1007/978-981-19-4147-4_22. [Google Scholar]
  • Siddique, A., Kandpal, G. and Kumar, P., 2018. Proline accumulation and its defensive role under diverse stress condition in plants: An overview. Journal of Pure and Applied Microbiology, 12(3), pp.1655-1659. [CrossRef] [Google Scholar]
  • Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. [CrossRef] [Google Scholar]
  • Akhtar, N. and Bansal, J.G., 2017. Risk factors of Lung Cancer in nonsmoker. Current problems in cancer, 41(5), pp.328-339. [CrossRef] [PubMed] [Google Scholar]
  • Mahajan, N., Rawal, S., Verma, M., Poddar, M. and Alok, S., 2013. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), pp.185-192. [CrossRef] [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Turchenko, V.A., 2021. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Materials Today Chemistry, 20, p.100460. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.