Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01091
Number of page(s) 9
Published online 12 January 2024
  • K. Perakis, F. Lampathaki, K. Nikas, Y. Georgiou, O. Marko, and J. Maselyne, “CYBELE – Fostering precision agriculture & livestock farming through secure access to large-scale HPC enabled virtual industrial experimentation environments fostering scalable big data analytics,” Computer Networks, vol. 168, Feb. 2020, doi: 10.1016/j.comnet.2019.107035. [CrossRef] [Google Scholar]
  • M. McCaig, D. Rezania, and R. Dara, “Framing the response to IoT in agriculture: A discourse analysis,” Agric Syst, vol. 204, Jan. 2023, doi: 10.1016/j.agsy.2022.103557. [CrossRef] [Google Scholar]
  • C. Maraveas, D. Piromalis, K. G. Arvanitis, T. Bartzanas, and D. Loukatos, “Applications of IoT for optimized greenhouse environment and resources management,” Comput Electron Agric, vol. 198, Jul. 2022, doi: 10.1016/j.compag.2022.106993. [CrossRef] [Google Scholar]
  • K. Paul et al., “Viable smart sensors and their application in data driven agriculture,” Comput Electron Agric, vol. 198, Jul. 2022, doi: 10.1016/j.compag.2022.107096. [CrossRef] [Google Scholar]
  • V. R. Pathmudi, N. Khatri, S. Kumar, A. S. H. Abdul-Qawy, and A. K. Vyas, “A systematic review of IoT technologies and their constituents for smart and sustainable agriculture applications,” Sci Afr, vol. 19, Mar. 2023, doi: 10.1016/j.sciaf.2023.e01577. [Google Scholar]
  • A. Morchid, R. El Alami, A. A. Raezah, and Y. Sabbar, “Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges,” Ain Shams Engineering Journal, 2023, doi: 10.1016/j.asej.2023.102509. [Google Scholar]
  • A. Rejeb, K. Rejeb, A. Abdollahi, F. Al-Turjman, and H. Treiblmaier, “The Interplay between the Internet of Things and agriculture: A bibliometric analysis and research agenda,” Internet of Things (Netherlands), vol. 19, Aug. 2022, doi: 10.1016/j.iot.2022.100580. [Google Scholar]
  • C. Prakash, L. P. Singh, A. Gupta, and S. K. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation,” Sens Actuators A Phys, vol. 362, Nov. 2023, doi: 10.1016/j.sna.2023.114605. [CrossRef] [Google Scholar]
  • D. Shamia, S. Suganyadevi, V. Satheeswaran, and K. Balasamy, “Digital twins in precision agriculture monitoring using artificial intelligence,” Digital Twin for Smart Manufacturing, pp. 243–265, 2023, doi: 10.1016/B978-0-323-99205-3.00004-3. [Google Scholar]
  • G. Fastellini and C. Schillaci, “Precision farming and IoT case studies across the world,” Agricultural Internet of Things and Decision Support for Precision Smart Farming, pp. 331–415, Jan. 2020, doi: 10.1016/B978-0-12-818373-1.00007-X. [Google Scholar]
  • R. Togneri, R. Prati, H. Nagano, and C. Kamienski, “Data-driven water need estimation for IoT-based smart irrigation: A survey,” Expert Syst Appl, vol. 225, Sep. 2023, doi: 10.1016/j.eswa.2023.120194. [CrossRef] [Google Scholar]
  • S. Mishra and S. K. Sharma, “Advanced contribution of IoT in agricultural production for the development of smart livestock environments,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100724. [Google Scholar]
  • T. Ayoub Shaikh, T. Rasool, and F. Rasheed Lone, “Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming,” Comput Electron Agric, vol. 198, Jul. 2022, doi: 10.1016/j.compag.2022.107119. [CrossRef] [Google Scholar]
  • H. M. Abdullah, Md. N. Islam, M. H. Saikat, and Md. A. H. B. Bhuiyan, “Precision agriculture practices from planting to postharvest: scopes, opportunities, and challenges of innovation in developing countries,” Remote Sensing in Precision Agriculture, pp. 3–26, 2024, doi: 10.1016/B978-0-323-91068-2.00014-X. [Google Scholar]
  • S. Sarkar et al., “Cyber-agricultural systems for crop breeding and sustainable production,” Trends Plant Sci, Aug. 2023, doi: 10.1016/j.tplants.2023.08.001. [Google Scholar]
  • S. Rudrakar and P. Rughani, “IoT based agriculture (Ag-IoT): A detailed study on architecture, security and forensics,” Information Processing in Agriculture, Sep. 2023, doi: 10.1016/j.inpa.2023.09.002. [Google Scholar]
  • Md. A. Ali, R. K. Dhanaraj, and A. Nayyar, “A high performance-oriented AI-enabled IoT-based pest detection system using sound analytics in large agricultural field,” Microprocess Microsyst, vol. 103, p. 104946, Nov. 2023, doi: 10.1016/J.MICPRO.2023.104946. [CrossRef] [Google Scholar]
  • D. Huo, A. W. Malik, S. D. Ravana, A. U. Rahman, and I. Ahmedy, “Mapping smart farming: Addressing agricultural challenges in data-driven era,” Renewable and Sustainable Energy Reviews, vol. 189, Jan. 2024, doi: 10.1016/j.rser.2023.113858. [Google Scholar]
  • M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing smart farming through the applications of Agriculture 4.0 technologies,” International Journal of Intelligent Networks, vol. 3, pp. 150–164, Jan. 2022, doi: 10.1016/j.ijin.2022.09.004. [CrossRef] [Google Scholar]
  • R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 5602–5618, Sep. 2022, doi: 10.1016/j.jksuci.2021.05.013. [CrossRef] [Google Scholar]
  • N. Tsolakis, T. S. Harrington, and J. S. Srai, “Leveraging Automation and Data-driven Logistics for Sustainable Farming of High-value Crops in Emerging Economies,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2022.100139. [CrossRef] [Google Scholar]
  • P. Rajak, A. Ganguly, S. Adhikary, and S. Bhattacharya, “Internet of Things and smart sensors in agriculture: Scopes and challenges,” J Agric Food Res, vol. 14, p. 100776, Dec. 2023, doi: 10.1016/j.jafr.2023.100776. [Google Scholar]
  • N. hashim et al., “Smart Farming for Sustainable Rice Production: An Insight into Applications, Challenges and Future Prospects,” Rice Sci, Sep. 2023, doi: 10.1016/J.RSCI.2023.08.004. [Google Scholar]
  • Y. Jararweh, S. Fatima, M. Jarrah, and S. AlZu’bi, “Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions,” Computers and Electrical Engineering, vol. 110, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108799. [CrossRef] [Google Scholar]
  • S. Shreya, K. Chatterjee, and A. Singh, “BFSF: A secure IoT based framework for smart farming using blockchain,” Sustainable Computing: Informatics and Systems, vol. 40, p. 100917, Dec. 2023, doi: 10.1016/j.suscom.2023.100917. [CrossRef] [Google Scholar]
  • “Precision Agriculture and Sustainable Yields Insights from IoT-Driven Farming and the Precision Agriculture Test - Search |” Accessed: Oct. 28, 2023. [Online]. Available: [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
  • M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
  • M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  • P. Singh et al., “Comparative Study of Concrete Cylinders Confined Using Natural and Artificial Fibre Reinforced Polymers,” Lecture Notes in Mechanical Engineering, pp. 79–91, 2023, doi: 10.1007/978-981-19-4147-4_8. [Google Scholar]
  • P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  • A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” UPRAVLENIE / MANAGEMENT (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
  • S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
  • R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456-9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Sombra, A.S.B., 2021. Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. Journal of Materials Chemistry C, 9(16), pp.5425-5436. [CrossRef] [Google Scholar]
  • Khamparia, A., Singh, P.K., Rani, P., Samanta, D., Khanna, A. and Bhushan, B., 2021. An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning. Transactions on Emerging Telecommunications Technologies, 32(7), p.e3963. [CrossRef] [Google Scholar]
  • Prakash, C., Singh, S., Pabla, B.S. and Uddin, M.S., 2018. Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surface and Coatings Technology, 346, pp.9-18. [CrossRef] [Google Scholar]
  • Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F. and Muhammad, G., 2021. Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare. IEEE Internet of Things Journal, 9(4), pp.2649-2656. [Google Scholar]
  • Uddin, M.S., Tewari, D., Sharma, G., Kabir, M.T., Barreto, G.E., Bin-Jumah, M.N., Perveen, A., Abdel-Daim, M.M. and Ashraf, G.M., 2020. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Molecular Neurobiology, 57, pp.2902-2919. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.