Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01092
Number of page(s) 9
Published online 12 January 2024
  • S. K. Samal et al., “3D-Printed Satellite Brackets: Materials, Manufacturing and Applications,” Crystals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/CRYST12081148. [Google Scholar]
  • K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  • S. Subramaniam et al., “Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review,” Sustainability (Switzerland), vol. 14, no. 16, Aug. 2022, doi: 10.3390/SU14169951. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  • M. Alshamrani, “IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 4687–4701, Sep. 2022, doi: 10.1016/j.jksuci.2021.06.005. [CrossRef] [Google Scholar]
  • S. Ben Othman, F. A. Almalki, C. Chakraborty, and H. Sakli, “Privacy-preserving aware data aggregation for IoT-based healthcare with green computing technologies,” Computers and Electrical Engineering, vol. 101, Jul. 2022, doi: 10.1016/j.compeleceng.2022.108025. [Google Scholar]
  • D. Kumar, S. K. Sood, and K. S. Rawat, “Empowering elderly care with intelligent IoT-Driven smart toilets for home-based infectious health monitoring,” Artif Intell Med, vol. 144, Oct. 2023, doi: 10.1016/j.artmed.2023.102666. [CrossRef] [PubMed] [Google Scholar]
  • N. S. Sworna, A. K. M. M. Islam, S. Shatabda, and S. Islam, “Towards development of IoT-ML driven healthcare systems: A survey,” Journal of Network and Computer Applications, vol. 196, Dec. 2021, doi: 10.1016/j.jnca.2021.103244. [CrossRef] [Google Scholar]
  • “IoT-Enhanced Healthcare: A Patient Care Evaluation Using the IoT Healthcare Test - Search |” Accessed: Oct. 28, 2023. [Online]. Available: [Google Scholar]
  • N. Singh, S. P. Sasirekha, A. Dhakne, B. V. S. Thrinath, D. Ramya, and R. Thiagarajan, “IOT enabled hybrid model with learning ability for E-health care systems,” Measurement: Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100567. [Google Scholar]
  • P. Kaur, “Internet of things (IoT) and big data analytics (BDA) in healthcare,” Digital Transformation in Healthcare in Post-COVID-19 Times, pp. 45–57, Jan. 2023, doi: 10.1016/B978-0-323-98353-2.00015-0. [Google Scholar]
  • S. Varsha, K. Adalarasu, M. Jagannath, and T. Arunkumar, “IoT in modern healthcare systems focused on neuroscience disorders and mental health,” Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems, pp. 133–149, Jan. 2023, doi: 10.1016/B978-0-323-99199-5.00006-9. [Google Scholar]
  • S. Kaddoura, A. El Arid, and A. Al-Dulaimy, “Supervised machine learning techniques to protect IoT healthcare environment against cyberattacks,” Intelligent Edge Computing for Cyber Physical Applications, pp. 17–34, Jan. 2023, doi: 10.1016/B978-0-323-99412-5.00001-0. [Google Scholar]
  • A. Sharma, A. Sharma, R. Virmani, G. Kumar, T. Virmani, and N. Chitranshi, “Deep learning IoT in medical and healthcare,” Deep Learning in Personalized Healthcare and Decision Support, pp. 245–261, 2023, doi: 10.1016/B978-0-443-19413-9.00027-8. [Google Scholar]
  • E. M. Adere, “Blockchain in healthcare and IoT: A systematic literature review,” Array, vol. 14, Jul. 2022, doi: 10.1016/j.array.2022.100139. [CrossRef] [Google Scholar]
  • D. Verma et al., “Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications,” Biosens Bioelectron X, vol. 11, Sep. 2022, doi: 10.1016/j.biosx.2022.100153. [Google Scholar]
  • N. Mukati, N. Namdev, R. Dilip, N. Hemalatha, V. Dhiman, and B. Sahu, “Healthcare Assistance to COVID-19 Patient using Internet of Things (IoT) Enabled Technologies,” Mater Today Proc, vol. 80, pp. 3777–3781, Jan. 2023, doi: 10.1016/j.matpr.2021.07.379. [CrossRef] [PubMed] [Google Scholar]
  • B. Kapoor, B. Nagpal, and M. Alharbi, “Secured healthcare monitoring for remote patient using energy-efficient IoT sensors,” Computers and Electrical Engineering, vol. 106, Mar. 2023, doi: 10.1016/j.compeleceng.2023.108585. [CrossRef] [Google Scholar]
  • A. I. Taloba et al., “A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare,” Alexandria Engineering Journal, vol. 65, pp. 263–274, Feb. 2023, doi: 10.1016/j.aej.2022.09.031. [CrossRef] [Google Scholar]
  • Z. Zhao, X. Li, B. Luan, W. Jiang, W. Gao, and S. Neelakandan, “Secure Internet of Things (IoT) using a novel Brooks Iyengar quantum Byzantine Agreement-centered blockchain Networking (BIQBA-BCN) model in smart healthcare,” Inf Sci (N Y), vol. 629, pp. 440–455, Jun. 2023, doi: 10.1016/j.ins.2023.01.020. [CrossRef] [Google Scholar]
  • E. M. Onyema et al., “Evaluation of IoT-Enabled hybrid model for genome sequence analysis of patients in healthcare 4.0,” Measurement: Sensors, vol. 26, Apr. 2023, doi: 10.1016/j.measen.2023.100679. [CrossRef] [Google Scholar]
  • E. H. Houssein and A. Sayed, “Boosted federated learning based on improved Particle Swarm Optimization for healthcare IoT devices,” Comput Biol Med, vol. 163, Sep. 2023, doi: 10.1016/j.compbiomed.2023.107195. [CrossRef] [PubMed] [Google Scholar]
  • N. Shaikh, K. Kasat, R. K. Godi, V. R. Krishna, D. K. Chauhan, and J. Kharade, “Novel IoT framework for event processing in healthcare applications,” Measurement: Sensors, vol. 27, Jun. 2023, doi: 10.1016/j.measen.2023.100733. [CrossRef] [Google Scholar]
  • Z. Gong et al., “Smart urban planning: Intelligent cognitive analysis of healthcare data in cloud-based IoT,” Computers and Electrical Engineering, vol. 110, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108878. [CrossRef] [Google Scholar]
  • A. Rejeb et al., “The Internet of Things (IoT) in healthcare: Taking stock and moving forward,” Internet of Things (Netherlands), vol. 22, Jul. 2023, doi: 10.1016/j.iot.2023.100721. [Google Scholar]
  • A. S. Nadhan and I. Jeena Jacob, “Enhancing healthcare security in the digital era: Safeguarding medical images with lightweight cryptographic techniques in IoT healthcare applications,” Biomed Signal Process Control, vol. 88, Feb. 2024, doi: 10.1016/j.bspc.2023.105511. [CrossRef] [Google Scholar]
  • H. F. Ahmad, W. Rafique, R. U. Rasool, A. Alhumam, Z. Anwar, and J. Qadir, “Leveraging 6G, extended reality, and IoT big data analytics for healthcare: A review,” Comput Sci Rev, vol. 48, May 2023, doi: 10.1016/j.cosrev.2023.100558. [CrossRef] [Google Scholar]
  • A. M. Mishra et al., “Driving a key generation strategy with training-based optimization to provide safe and effective authentication using data sharing approach in IoT healthcare,” Comput Commun, Sep. 2023, doi: 10.1016/J.COMCOM.2023.09.016. [Google Scholar]
  • B. Ahamed, S. Sellamuthu, P. N. Karri, I. V. Srinivas, A. N. Mohammed Zabeeulla, and M. Ashok Kumar, “Design of an energy-efficient IOT device-assisted wearable sensor platform for healthcare data management,” Measurement: Sensors, p. 100928, Oct. 2023, doi: 10.1016/J.MEASEN.2023.100928. [Google Scholar]
  • P. Hegde and P. K. R. Maddikunta, “Amalgamation of Blockchain with resource-constrained IoT devices for healthcare applications – State of art, challenges and future directions,” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 220–239, Jun. 2023, doi: 10.1016/j.ijcce.2023.06.002. [CrossRef] [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
  • K. Kumar et al., “Breaking Barriers: Innovative Fabrication Processes for Nanostructured Materials and Nano Devices,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01197. [Google Scholar]
  • K. Kumar et al., “Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01199. [Google Scholar]
  • Vinnik, D.A., Zhivulin, V.E., Sherstyuk, D.P., Starikov, A.Y., Zezyulina, P.A., Gudkova, S.A., Zherebtsov, D.A., Rozanov, K.N., Trukhanov, S.V., Astapovich, K.A. and Sombra, A.S.B., 2021. Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. Journal of Materials Chemistry C, 9(16), pp.5425-5436. [CrossRef] [Google Scholar]
  • Khamparia, A., Singh, P.K., Rani, P., Samanta, D., Khanna, A. and Bhushan, B., 2021. An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning. Transactions on Emerging Telecommunications Technologies, 32(7), p.e3963. [CrossRef] [Google Scholar]
  • Prakash, C., Singh, S., Pabla, B.S. and Uddin, M.S., 2018. Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surface and Coatings Technology, 346, pp.9-18. [CrossRef] [Google Scholar]
  • Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F. and Muhammad, G., 2021. Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare. IEEE Internet of Things Journal, 9(4), pp.2649-2656. [Google Scholar]
  • Uddin, M.S., Tewari, D., Sharma, G., Kabir, M.T., Barreto, G.E., Bin-Jumah, M.N., Perveen, A., Abdel-Daim, M.M. and Ashraf, G.M., 2020. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Molecular Neurobiology, 57, pp.2902-2919. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.