Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01096 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/bioconf/20248601096 | |
Published online | 12 January 2024 |
- C. T. Yang, H. W. Chen, E. J. Chang, E. Kristiani, K. L. P. Nguyen, and J. S. Chang, “Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control,” J Hazard Mater, vol. 419, Oct. 2021, doi: 10.1016/j.jhazmat.2021.126442. [Google Scholar]
- A. Kalla, C. de Alwis, P. Porambage, G. Gür, and M. Liyanage, “A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions,” J Ind Inf Integr, vol. 30, Nov. 2022, doi: 10.1016/j.jii.2022.100404. [Google Scholar]
- Km. Preeti, A. Kumar, N. Jain, A. Kaushik, Y. K. Mishra, and S. K. Sharma, “Tailored ZnO nanostructures for efficient sensing of toxic metallic ions of drainage systems,” Materials Today Sustainability, vol. 24, p. 100515, Dec. 2023, doi: 10.1016/j.mtsust.2023.100515. [CrossRef] [Google Scholar]
- “Edge Computing and AI: Advancements in Industry 5.0- An Experimental Assessment - Search | ScienceDirect.com.” Accessed: Nov. 02, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Edge%20Computing%20and%20AI%3A%20Advancements%20in%20Industry%205.0-%20An%20Experimental%20Assessment [Google Scholar]
- R. Hamza and D. Minh-Son, “Research on privacy-preserving techniques in the era of the 5G applications,” Virtual Reality and Intelligent Hardware, vol. 4, no. 3, pp. 210–222, Jun. 2022, doi: 10.1016/j.vrih.2022.01.007. [CrossRef] [Google Scholar]
- J. Ahmad, M. Awais, U. Rashid, C. Ngamcharussrivichai, S. Raza Naqvi, and I. Ali, “A systematic and critical review on effective utilization of artificial intelligence for bio-diesel production techniques,” Fuel, vol. 338, Apr. 2023, doi: 10.1016/j.fuel.2022.127379. [Google Scholar]
- Y. Zhou, M. Yuan, J. Zhang, G. Ding, and S. Qin, “Review of vision-based defect detection research and its perspectives for printed circuit board,” J Manuf Syst, vol. 70, pp. 557–578, Oct. 2023, doi: 10.1016/j.jmsy.2023.08.019. [CrossRef] [Google Scholar]
- S. Y. Teng, M. Touš, W. D. Leong, B. S. How, H. L. Lam, and V. Máša, “Recent advances on industrial data-driven energy savings: Digital twins and infrastructures,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110208. [Google Scholar]
- M. Paul, L. Maglaras, M. A. Ferrag, and I. Almomani, “Digitization of healthcare sector: A study on privacy and security concerns,” ICT Express, vol. 9, no. 4, pp. 571–588, Aug. 2023, doi: 10.1016/j.icte.2023.02.007. [CrossRef] [Google Scholar]
- W. de Paula Ferreira, F. Armellini, and L. A. De Santa-Eulalia, “Simulation in industry 4.0: A state-of- the-art review,” Comput Ind Eng, vol. 149, Nov. 2020, doi: 10.1016/j.cie.2020.106868. [CrossRef] [Google Scholar]
- R. Fathi et al., “Past and present of functionally graded coatings: Advancements and future challenges,” Appl Mater Today, vol. 26, Mar. 2022, doi: 10.1016/j.apmt.2022.101373. [PubMed] [Google Scholar]
- R. Dhinesh Kumar and S. Chavhan, “Shift to 6G: Exploration on trends, vision, requirements, technologies, research, and standardization efforts,” Sustainable Energy Technologies and Assessments, vol. 54, Dec. 2022, doi: 10.1016/j.seta.2022.102666. [Google Scholar]
- R. Abbasi, P. Martinez, and R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0,” Smart Agricultural Technology, vol. 2, Dec. 2022, doi: 10.1016/j.atech.2022.100042. [CrossRef] [Google Scholar]
- M. Malik, V. K. Gahlawat, R. Mor, K. Rahul, B. P. Singh, and S. Agnihotri, “Industry 4.0 technologies in postharvest operations: current trends and implications,” Postharvest Management of Fresh Produce, pp. 347–368, 2023, doi: 10.1016/B978-0-323-91132-0.00012-5. [Google Scholar]
- A. Jahid, M. H. Alsharif, and T. J. Hall, “The convergence of blockchain, IoT and 6G: Potential, opportunities, challenges and research roadmap,” Journal of Network and Computer Applications, vol. 217, Aug. 2023, doi: 10.1016/j.jnca.2023.103677. [CrossRef] [Google Scholar]
- T. Ahmad et al., “Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities,” J Clean Prod, vol. 289, Mar. 2021, doi: 10.1016/j.jclepro.2021.125834. [CrossRef] [Google Scholar]
- N. Herwig, Z. Peng, and P. Borghesani, “Bridging the trust gap: Evaluating feature relevance in neural network-based gear wear mechanism analysis with explainable AI,” Tribol Int, vol. 187, Sep. 2023, doi: 10.1016/j.triboint.2023.108670. [CrossRef] [Google Scholar]
- L. Qiao, Y. Li, D. Chen, S. Serikawa, M. Guizani, and Z. Lv, “A survey on 5G/6G, AI, and Robotics,” Computers and Electrical Engineering, vol. 95, Oct. 2021, doi: 10.1016/j.compeleceng.2021.107372. [CrossRef] [Google Scholar]
- N. J. Rowan, “The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain – Quo Vadis?,” Aquac Fish, vol. 8, no. 4, pp. 365–374, Jul. 2023, doi: 10.1016/j.aaf.2022.06.003. [CrossRef] [Google Scholar]
- M. M. Ahsan and Z. Siddique, “Industry 4.0 in Healthcare: A systematic review,” International Journal of Information Management Data Insights, vol. 2, no. 1, Apr. 2022, doi: 10.1016/j.jjimei.2022.100079. [CrossRef] [Google Scholar]
- T. Jacob Fernandes França, H. São Mamede, J. M. Pereira Barroso, and V. M. Pereira Duarte dos Santos, “Artificial intelligence applied to potential assessment and talent identification in an organisational context,” Heliyon, vol. 9, no. 4, Apr. 2023, doi: 10.1016/j.heliyon.2023.e14694. [Google Scholar]
- N. Meyendorf, N. Ida, R. Singh, and J. Vrana, “NDE 4.0: Progress, promise, and its role to industry 4.0,” NDT and E International, vol. 140, Dec. 2023, doi: 10.1016/j.ndteint.2023.102957. [CrossRef] [Google Scholar]
- A. R. Murthy, K. Lakshmi, S. Vishnuvardhan, and M. Saravanan, “Prediction of SIF range for plain API 5L Grade X65 steel under corrosion using AI & ML models,” Mater Today Commun, vol. 36, Aug. 2023, doi: 10.1016/j.mtcomm.2023.106543. [Google Scholar]
- J. Leng et al., “Towards resilience in Industry 5.0: A decentralized autonomous manufacturing paradigm,” J Manuf Syst, vol. 71, pp. 95–114, Dec. 2023, doi: 10.1016/j.jmsy.2023.08.023. [CrossRef] [Google Scholar]
- B. Wang et al., “Human Digital Twin in the context of Industry 5.0,” Robot Comput Integr Manuf, vol. 85, Feb. 2024, doi: 10.1016/j.rcim.2023.102626. [Google Scholar]
- Shruti, S. Rani, and G. Srivastava, “Secure hierarchical fog computing-based architecture for industry 5.0 using an attribute-based encryption scheme,” Expert Syst Appl, vol. 235, Jan. 2024, doi: 10.1016/j.eswa.2023.121180. [CrossRef] [Google Scholar]
- G. Plakas, S. T. Ponis, K. Agalianos, E. Aretoulaki, and S. P. Gayalis, “Augmented reality in manufacturing and logistics: Lessons learnt from a real-life industrial application,” Procedia Manuf, vol. 51, pp. 1629–1635, 2020, doi: 10.1016/j.promfg.2020.10.227. [CrossRef] [Google Scholar]
- Jena, M.K., Sharma, N.R., Petitt, M., Maulik, D. and Nayak, N.R., 2020. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 10(6), p.953. [CrossRef] [PubMed] [Google Scholar]
- Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal, D.S., Datta, S., Samuel, J., Dey, P., Wang, S. and Prasad, R., 2020. Revealing on hydrogen sulfide and nitric oxide signals co‐ordination for plant growth under stress conditions. Physiologia Plantarum, 168(2), pp.301-317. [CrossRef] [PubMed] [Google Scholar]
- Nagpal, R., Behare, P.V., Kumar, M., Mohania, D., Yadav, M., Jain, S., Menon, S., Parkash, O., Marotta, F., Minelli, E. and Henry, C.J.K., 2012. Milk, milk products, and disease free health: an updated overvi ew. Critical reviews in food science and nutrition, 52(4), pp.321-333. [CrossRef] [PubMed] [Google Scholar]
- Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X. and Singh, P., 2021. Secure and energy- efficient smart building architecture with emerging technology IoT. Computer Communications, 176, pp.207-217. [CrossRef] [Google Scholar]
- Kehinde, B.A. and Sharma, P., 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical reviews in food science and nutrition, 60(2), pp.322-340. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.