Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01097
Number of page(s) 8
Published online 12 January 2024
  • A. Kumar et al., “Blockchain for unmanned underwater drones: Research issues, challenges, trends and future directions,” Journal of Network and Computer Applications, vol. 215, Jun. 2023, doi: 10.1016/j.jnca.2023.103649. [CrossRef] [Google Scholar]
  • Z. Lv, N. Wang, X. Ma, Y. Sun, Y. Meng, and Y. Tian, “Evaluation Standards of Intelligent Technology based on Financial Alternative Data,” Journal of Innovation and Knowledge, vol. 7, no. 4, Oct. 2022, doi: 10.1016/j.jik.2022.100229. [Google Scholar]
  • R. Abbasi, P. Martinez, and R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0,” Smart Agricultural Technology, vol. 2, Dec. 2022, doi: 10.1016/j.atech.2022.100042. [CrossRef] [Google Scholar]
  • M. M. Ahsan and Z. Siddique, “Industry 4.0 in Healthcare: A systematic review,” International Journal of Information Management Data Insights, vol. 2, no. 1, Apr. 2022, doi: 10.1016/j.jjimei.2022.100079. [CrossRef] [Google Scholar]
  • A. Kalla, C. de Alwis, P. Porambage, G. Gür, and M. Liyanage, “A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions,” J Ind Inf Integr, vol. 30, Nov. 2022, doi: 10.1016/j.jii.2022.100404. [Google Scholar]
  • S. Talwar, A. Dhir, N. Islam, P. Kaur, and A. Almusharraf, “Resistance of multiple stakeholders to e- health innovations: Integration of fundamental insights and guiding research paths,” J Bus Res, vol. 166, Nov. 2023, doi: 10.1016/j.jbusres.2023.114135. [CrossRef] [Google Scholar]
  • S. Y. Teng, M. Touš, W. D. Leong, B. S. How, H. L. Lam, and V. Máša, “Recent advances on industrial data-driven energy savings: Digital twins and infrastructures,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110208. [Google Scholar]
  • S. Fosso Wamba, M. M. Queiroz, and L. Hamzi, “A bibliometric and multi-disciplinary quasi-systematic analysis of social robots: Past, future, and insights of human-robot interaction,” Technol Forecast Soc Change, vol. 197, Dec. 2023, doi: 10.1016/j.techfore.2023.122912. [CrossRef] [Google Scholar]
  • A. Miglani and N. Kumar, “Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: A systematic review,” Comput Commun, vol. 178, pp. 37–63, Oct. 2021, doi: 10.1016/j.comcom.2021.07.009. [CrossRef] [Google Scholar]
  • A. Smahi et al., “BV-ICVs: A privacy-preserving and verifiable federated learning framework for V2X environments using blockchain and zkSNARKs,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 6, Jun. 2023, doi: 10.1016/j.jksuci.2023.03.020. [Google Scholar]
  • T. Ahmad et al., “Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities,” J Clean Prod, vol. 289, Mar. 2021, doi: 10.1016/j.jclepro.2021.125834. [CrossRef] [Google Scholar]
  • M. Paul, L. Maglaras, M. A. Ferrag, and I. Almomani, “Digitization of healthcare sector: A study on privacy and security concerns,” ICT Express, vol. 9, no. 4, pp. 571–588, Aug. 2023, doi: 10.1016/j.icte.2023.02.007. [CrossRef] [Google Scholar]
  • M. Macas, C. Wu, and W. Fuertes, “A survey on deep learning for cybersecurity: Progress, challenges, and opportunities,” Computer Networks, vol. 212, Jul. 2022, doi: 10.1016/j.comnet.2022.109032. [CrossRef] [Google Scholar]
  • Shruti, S. Rani, and G. Srivastava, “Secure hierarchical fog computing-based architecture for industry 5.0 using an attribute-based encryption scheme,” Expert Syst Appl, vol. 235, Jan. 2024, doi: 10.1016/j.eswa.2023.121180. [CrossRef] [Google Scholar]
  • A. O. Omoniyi, Y. Wang, S. Yang, J. Liu, J. Zhang, and Z. Su, “High-security information encryption strategy based on optical functional materials: A review on materials design, problems, multiple coding, and beyond,” Mater Today Commun, vol. 36, Aug. 2023, doi: 10.1016/j.mtcomm.2023.106508. [Google Scholar]
  • V. Kampourakis, V. Gkioulos, and S. Katsikas, “A systematic literature review on wireless security testbeds in the cyber-physical realm,” Comput Secur, vol. 133, Oct. 2023, doi: 10.1016/j.cose.2023.103383. [CrossRef] [Google Scholar]
  • S. Tanwar, U. Bodkhe, M. D. Alshehri, R. Gupta, and R. Sharma, “Blockchain-assisted industrial automation beyond 5G networks,” Comput Ind Eng, vol. 169, Jul. 2022, doi: 10.1016/j.cie.2022.108209. [CrossRef] [Google Scholar]
  • M. Dadhich, S. Poddar, and K. K. Hiran, “Antecedents and consequences of patients’ adoption of the IoT 4.0 for e-health management system: A novel PLS-SEM approach,” Smart Health, vol. 25, Sep. 2022, doi: 10.1016/j.smhl.2022.100300. [CrossRef] [Google Scholar]
  • “Security and Privacy in AI-Driven Industry 5.0: Experimental Insights and Threat Analysis - Search |” Accessed: Nov. 02, 2023. [Online]. Available: [Google Scholar]
  • M. Liebenberg and M. Jarke, “Information systems engineering with Digital Shadows: Concept and use cases in the Internet of Production,” Inf Syst, vol. 114, Mar. 2023, doi: 10.1016/ [CrossRef] [Google Scholar]
  • T. Jacob Fernandes França, H. São Mamede, J. M. Pereira Barroso, and V. M. Pereira Duarte dos Santos, “Artificial intelligence applied to potential assessment and talent identification in an organisational context,” Heliyon, vol. 9, no. 4, Apr. 2023, doi: 10.1016/j.heliyon.2023.e14694. [Google Scholar]
  • R. Dhinesh Kumar and S. Chavhan, “Shift to 6G: Exploration on trends, vision, requirements, technologies, research, and standardization efforts,” Sustainable Energy Technologies and Assessments, vol. 54, Dec. 2022, doi: 10.1016/j.seta.2022.102666. [Google Scholar]
  • S. Suhail, M. Iqbal, R. Hussain, and R. Jurdak, “ENIGMA: An explainable digital twin security solution for cyber–physical systems,” Comput Ind, vol. 151, Oct. 2023, doi: 10.1016/j.compind.2023.103961. [CrossRef] [Google Scholar]
  • K. Kalia et al., “Improving MapReduce heterogeneous performance using KNN fair share scheduling,” Rob Auton Syst, vol. 157, Nov. 2022, doi: 10.1016/J.ROBOT.2022.104228. [CrossRef] [Google Scholar]
  • A. Prakash, M. Arora, A. Mittal, S. Kampani, and S. Dixit, “Green manufacturing: Related literature over the past decade,” Mater Today Proc, vol. 69, pp. 468–472, Jan. 2022, doi: 10.1016/J.MATPR.2022.09.142. [CrossRef] [Google Scholar]
  • A. Nair et al., “Machine Learning for Prediction of Heat Pipe Effectiveness,” Energies (Basel), vol. 15, no. 9, May 2022, doi: 10.3390/EN15093276. [Google Scholar]
  • R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [PubMed] [Google Scholar]
  • M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single- and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [PubMed] [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
  • H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
  • K. Kumar et al., “Breaking Barriers: Innovative Fabrication Processes for Nanostructured Materials and Nano Devices,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01197. [Google Scholar]
  • K. Kumar et al., “Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01199. [Google Scholar]
  • M. Malik, V. K. Gahlawat, R. Mor, K. Rahul, B. P. Singh, and S. Agnihotri, “Industry 4.0 technologies in postharvest operations: current trends and implications,” Postharvest Management of Fresh Produce, pp. 347–368, 2023, doi: 10.1016/B978-0-323-91132-0.00012-5. [Google Scholar]
  • F. Jacob, E. H. Grosse, S. Morana, and C. J. König, “Picking with a robot colleague: A systematic literature review and evaluation of technology acceptance in human–robot collaborative warehouses,” Comput Ind Eng, vol. 180, Jun. 2023, doi: 10.1016/j.cie.2023.109262. [CrossRef] [Google Scholar]
  • M. Schmitt, “Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial Intelligence (AI)-enabled malware and intrusion detection,” J Ind Inf Integr, p. 100520, Dec. 2023, doi: 10.1016/j.jii.2023.100520. [Google Scholar]
  • C. T. Yang, H. W. Chen, E. J. Chang, E. Kristiani, K. L. P. Nguyen, and J. S. Chang, “Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control,” J Hazard Mater, vol. 419, Oct. 2021, doi: 10.1016/j.jhazmat.2021.126442. [Google Scholar]
  • A. Kalla, C. de Alwis, P. Porambage, G. Gür, and M. Liyanage, “A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions,” J Ind Inf Integr, vol. 30, Nov. 2022, doi: 10.1016/j.jii.2022.100404. [Google Scholar]
  • Km. Preeti, A. Kumar, N. Jain, A. Kaushik, Y. K. Mishra, and S. K. Sharma, “Tailored ZnO nanostructures for efficient sensing of toxic metallic ions of drainage systems,” Materials Today Sustainability, vol. 24, p. 100515, Dec. 2023, doi: 10.1016/j.mtsust.2023.100515. [CrossRef] [Google Scholar]
  • “Edge Computing and AI: Advancements in Industry 5.0- An Experimental Assessment - Search |” Accessed: Nov. 02, 2023. [Online]. Available: [Google Scholar]
  • R. Hamza and D. Minh-Son, “Research on privacy-preserving techniques in the era of the 5G applications,” Virtual Reality and Intelligent Hardware, vol. 4, no. 3, pp. 210–222, Jun. 2022, doi: 10.1016/j.vrih.2022.01.007. [CrossRef] [Google Scholar]
  • J. Ahmad, M. Awais, U. Rashid, C. Ngamcharussrivichai, S. Raza Naqvi, and I. Ali, “A systematic and critical review on effective utilization of artificial intelligence for bio-diesel production techniques,” Fuel, vol. 338, Apr. 2023, doi: 10.1016/j.fuel.2022.127379. [Google Scholar]
  • Jena, M.K., Sharma, N.R., Petitt, M., Maulik, D. and Nayak, N.R., 2020. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 10(6), p.953. [CrossRef] [PubMed] [Google Scholar]
  • Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal, D.S., Datta, S., Samuel, J., Dey, P., Wang, S. and Prasad, R., 2020. Revealing on hydrogen sulfide and nitric oxide signals co‐ordination for plant growth under stress conditions. Physiologia Plantarum, 168(2), pp.301-317. [CrossRef] [PubMed] [Google Scholar]
  • Nagpal, R., Behare, P.V., Kumar, M., Mohania, D., Yadav, M., Jain, S., Menon, S., Parkash, O., Marotta, F., Minelli, E. and Henry, C.J.K., 2012. Milk, milk products, and disease free health: an updated overview. Critical reviews in food science and nutrition, 52(4), pp.321-333. [CrossRef] [PubMed] [Google Scholar]
  • Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X. and Singh, P., 2021. Secure and energy- efficient smart building architecture with emerging technology IoT. Computer Communications, 176, pp.207-217. [CrossRef] [Google Scholar]
  • Kehinde, B.A. and Sharma, P., 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical reviews in food science and nutrition, 60(2), pp.322-340. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.