Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01098 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/20248601098 | |
Published online | 12 January 2024 |
- L. Barth, L. Schweiger, R. Benedech, and M. Ehrat, “From data to value in smart waste management: Optimizing solid waste collection with a digital twin-based decision support system,” Decision Analytics Journal, p. 100347, Oct. 2023, doi: 10.1016/J.DAJOUR.2023.100347. [Google Scholar]
- Z. Wang, P. Sun, Y. Hu, and A. Boukerche, “A novel hybrid method for achieving accurate and timeliness vehicular traffic flow prediction in road networks,” Comput Commun, vol. 209, pp. 378–386, Sep. 2023, doi: 10.1016/j.comcom.2023.07.019. [CrossRef] [Google Scholar]
- H. Yijing, W. Wei, Y. He, W. Qihong, and X. Kaiming, “Intelligent algorithms for incident detection and management in smart transportation systems,” Computers and Electrical Engineering, vol. 110, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108839. [CrossRef] [Google Scholar]
- A. M. Nagy and V. Simon, “Survey on traffic prediction in smart cities,” Pervasive Mob Comput, vol. 50, pp. 148–163, Oct. 2018, doi: 10.1016/j.pmcj.2018.07.004. [CrossRef] [Google Scholar]
- W. C. Tchuitcheu, C. Bobda, and M. J. H. Pantho, “Internet of smart-cameras for traffic lights optimization in smart cities,” Internet of Things (Netherlands), vol. 11, Sep. 2020, doi: 10.1016/j.iot.2020.100207. [Google Scholar]
- I. Gokasar, V. Simic, M. Deveci, and T. Senapati, “Alternative prioritization of freeway incident management using autonomous vehicles in mixed traffic using a type-2 neutrosophic number based decision support system,” Eng Appl Artif Intell, vol. 123, Aug. 2023, doi: 10.1016/j.engappai.2023.106183. [CrossRef] [Google Scholar]
- Z. Li and M. Shahidehpour, “Deployment of cybersecurity for managing traffic efficiency and safety in smart cities,” Electricity Journal, vol. 30, no. 4, pp. 52–61, May 2017, doi: 10.1016/j.tej.2017.04.003. [CrossRef] [Google Scholar]
- A. Jain, I. H. Gue, and P. Jain, “Research trends, themes, and insights on artificial neural networks for smart cities towards SDG-11,” J Clean Prod, vol. 412, Aug. 2023, doi: 10.1016/j.jclepro.2023.137300. [CrossRef] [Google Scholar]
- C. Bachechi, L. Po, and F. Rollo, “Big Data Analytics and Visualization in Traffic Monitoring,” Big Data Research, vol. 27, Feb. 2022, doi: 10.1016/j.bdr.2021.100292. [CrossRef] [Google Scholar]
- K. Kušić, R. Schumann, and E. Ivanjko, “A digital twin in transportation: Real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics,” Advanced Engineering Informatics, vol. 55, Jan. 2023, doi: 10.1016/j.aei.2022.101858. [Google Scholar]
- J. D. Padrón, E. Hernández-Orallo, C. T. Calafate, D. Soler, J. C. Cano, and P. Manzoni, “Realistic traffic model for urban environments based on induction loop data,” Simul Model Pract Theory, vol. 125, May 2023, doi: 10.1016/j.simpat.2023.102742. [Google Scholar]
- M. Cokic and I. Seskar, “Software defined network management for dynamic smart GRID traffic,” Future Generation Computer Systems, vol. 96, pp. 270–282, Jul. 2019, doi: 10.1016/j.future.2019.02.022. [CrossRef] [Google Scholar]
- “Real-Time Traffic Management in Smart Cities: Insights from the Traffic Management Simulation and Impact Analysis - Search | ScienceDirect.com.” Accessed: Nov. 03, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Real-Time%20Traffic%20Management%20in%20Smart%20Cities%3A%20Insights%20from%20the%20Traffic%20Management%20Simulation%20and%20Impact%20Analysis [Google Scholar]
- A. Heidari, N. J. Navimipour, and M. Unal, “Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review,” Sustain Cities Soc, vol. 85, Oct. 2022, doi: 10.1016/j.scs.2022.104089. [CrossRef] [Google Scholar]
- X. Qin, J. Ke, X. Wang, Y. Tang, and H. Yang, “Demand management for smart transportation: A review,” Multimodal Transportation, vol. 1, no. 4, Dec. 2022, doi: 10.1016/j.multra.2022.100038. [Google Scholar]
- J. Yao, Z. Cheng, and A. Chen, “Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022),” Transportation Research Part B: Methodological, vol. 177, Nov. 2023, doi: 10.1016/j.trb.2023.102832. [Google Scholar]
- M. Kolat, T. Tettamanti, T. Bécsi, and D. Esztergár-Kiss, “On the relationship between the activity at point of interests and road traffic,” Communications in Transportation Research, vol. 3, Dec. 2023, doi: 10.1016/j.commtr.2023.100102. [CrossRef] [Google Scholar]
- W. A. Jabbar, L. Y. Tiew, and N. Y. Ali Shah, “Internet of things enabled parking management system using long range wide area network for smart city,” Internet of Things and Cyber-Physical Systems, vol. 4, pp. 82–98, Jan. 2024, doi: 10.1016/j.iotcps.2023.09.001. [CrossRef] [Google Scholar]
- Z. E. Ahmed, A. A. Hashim, R. A. Saeed, and M. M. Saeed, “Mobility management enhancement in smart cities using software defined networks,” Sci Afr, vol. 22, Nov. 2023, doi: 10.1016/j.sciaf.2023.e01932. [Google Scholar]
- J. Jung, T. Oh, I. Kim, and S. Park, “Open-sourced real-time visualization platform for traffic simulation,” Procedia Comput Sci, vol. 220, pp. 243–250, 2023, doi: 10.1016/j.procs.2023.03.033. [CrossRef] [Google Scholar]
- D. G. Ramirez-Rios, L. K. Kalahasthi, and J. Holguín-Veras, “On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration,” Transp Res Part A Policy Pract, vol. 169, Mar. 2023, doi: 10.1016/j.tra.2023.103590. [Google Scholar]
- A. O. Philip and R. A. K. Saravanaguru, “Multisource traffic incident reporting and evidence management in Internet of Vehicles using machine learning and blockchain,” Eng Appl Artif Intell, vol. 117, Jan. 2023, doi: 10.1016/j.engappai.2022.105630. [CrossRef] [Google Scholar]
- P. Pandiyan, S. Saravanan, K. Usha, R. Kannadasan, M. H. Alsharif, and M. K. Kim, “Technological advancements toward smart energy management in smart cities,” Energy Reports, vol. 10, pp. 648–677, Nov. 2023, doi: 10.1016/j.egyr.2023.07.021. [CrossRef] [Google Scholar]
- A. Ait Ouallane, A. Bakali, A. Bahnasse, S. Broumi, and M. Talea, “Fusion of engineering insights and emerging trends: Intelligent urban traffic management system,” Information Fusion, vol. 88, pp. 218–248, Dec. 2022, doi: 10.1016/j.inffus.2022.07.020. [CrossRef] [Google Scholar]
- S. Baclet, K. Khoshkhah, M. Pourmoradnasseri, R. Rumpler, and A. Hadachi, “Near-real-time dynamic noise mapping and exposure assessment using calibrated microscopic traffic simulations,” Transp Res D Transp Environ, vol. 124, Nov. 2023, doi: 10.1016/j.trd.2023.103922. [CrossRef] [Google Scholar]
- Y. Liu et al., “Cognitive digital twins for freight parking management in last mile delivery under smart cities paradigm,” Comput Ind, vol. 153, Dec. 2023, doi: 10.1016/j.compind.2023.104022. [Google Scholar]
- C. T. Yang, H. W. Chen, E. J. Chang, E. Kristiani, K. L. P. Nguyen, and J. S. Chang, “Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control,” J Hazard Mater, vol. 419, Oct. 2021, doi: 10.1016/j.jhazmat.2021.126442. [Google Scholar]
- A. Kalla, C. de Alwis, P. Porambage, G. Gür, and M. Liyanage, “A survey on the use of blockchain for future 6G: Technical aspects, use cases, challenges and research directions,” J Ind Inf Integr, vol. 30, Nov. 2022, doi: 10.1016/j.jii.2022.100404. [Google Scholar]
- Km. Preeti, A. Kumar, N. Jain, A. Kaushik, Y. K. Mishra, and S. K. Sharma, “Tailored ZnO nanostructures for efficient sensing of toxic metallic ions of drainage systems,” Materials Today Sustainability, vol. 24, p. 100515, Dec. 2023, doi: 10.1016/j.mtsust.2023.100515. [CrossRef] [Google Scholar]
- “Edge Computing and AI: Advancements in Industry 5.0- An Experimental Assessment - Search | ScienceDirect.com.” Accessed: Nov. 02, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Edge%20Computing%20and%20AI%3A%20Advancements%20in%20Industry%205.0-%20An%20Experimental%20Assessment [Google Scholar]
- R. Hamza and D. Minh-Son, “Research on privacy-preserving techniques in the era of the 5G applications,” Virtual Reality and Intelligent Hardware, vol. 4, no. 3, pp. 210–222, Jun. 2022, doi: 10.1016/j.vrih.2022.01.007. [CrossRef] [Google Scholar]
- J. Ahmad, M. Awais, U. Rashid, C. Ngamcharussrivichai, S. Raza Naqvi, and I. Ali, “A systematic and critical review on effective utilization of artificial intelligence for bio-diesel production techniques,” Fuel, vol. 338, Apr. 2023, doi: 10.1016/j.fuel.2022.127379. [Google Scholar]
- Y. Zhou, M. Yuan, J. Zhang, G. Ding, and S. Qin, “Review of vision-based defect detection research and its perspectives for printed circuit board,” J Manuf Syst, vol. 70, pp. 557–578, Oct. 2023, doi: 10.1016/j.jmsy.2023.08.019. [CrossRef] [Google Scholar]
- S. Y. Teng, M. Touš, W. D. Leong, B. S. How, H. L. Lam, and V. Máša, “Recent advances on industrial data-driven energy savings: Digital twins and infrastructures,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110208. [Google Scholar]
- M. Paul, L. Maglaras, M. A. Ferrag, and I. Almomani, “Digitization of healthcare sector: A study on privacy and security concerns,” ICT Express, vol. 9, no. 4, pp. 571–588, Aug. 2023, doi: 10.1016/j.icte.2023.02.007. [CrossRef] [Google Scholar]
- W. de Paula Ferreira, F. Armellini, and L. A. De Santa-Eulalia, “Simulation in industry 4.0: A state-of- the-art review,” Comput Ind Eng, vol. 149, Nov. 2020, doi: 10.1016/j.cie.2020.106868. [CrossRef] [Google Scholar]
- Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
- M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
- K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
- K. Kumar et al., “Breaking Barriers: Innovative Fabrication Processes for Nanostructured Materials and Nano Devices,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01197. [Google Scholar]
- K. Kumar et al., “Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01199. [Google Scholar]
- K. Kumar et al., “Revolutionising Heat Treatment: Novel Strategies for Augmented Performance and Sustainability,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01200. [Google Scholar]
- M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco- Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
- A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978- 981-19-4147-4_12. [Google Scholar]
- T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” UPRAVLENIE / MANAGEMENT (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
- S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
- R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
- V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456-9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
- Jena, M.K., Sharma, N.R., Petitt, M., Maulik, D. and Nayak, N.R., 2020. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules, 10(6), p.953. [CrossRef] [PubMed] [Google Scholar]
- Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal, D.S., Datta, S., Samuel, J., Dey, P., Wang, S. and Prasad, R., 2020. Revealing on hydrogen sulfide and nitric oxide signals co‐ordination for plant growth under stress conditions. Physiologia Plantarum, 168(2), pp.301-317. [CrossRef] [PubMed] [Google Scholar]
- Nagpal, R., Behare, P.V., Kumar, M., Mohania, D., Yadav, M., Jain, S., Menon, S., Parkash, O., Marotta, F., Minelli, E. and Henry, C.J.K., 2012. Milk, milk products, and disease free health: an updated overview. Critical reviews in food science and nutrition, 52(4), pp.321-333. [CrossRef] [PubMed] [Google Scholar]
- Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X. and Singh, P., 2021. Secure and energy- efficient smart building architecture with emerging technology IoT. Computer Communications, 176, pp.207-217. [CrossRef] [Google Scholar]
- Kehinde, B.A. and Sharma, P., 2020. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Critical reviews in food science and nutrition, 60(2), pp.322-340. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.