Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01111
Number of page(s) 10
Published online 12 January 2024
  • N.M. Chikhradze, L.A. Japaridze, G.S. Abashidze, Properties of basalt plastics and of composites reinforced by hybrid fibers in operating conditions, in: Ning Hu (Ed.), Composites and Their Applications, 2012, pp. 243–268. Chapter 10. [Google Scholar]
  • F. Elgabbas, Development and Structural Testing of New basalt Fiber-Reinforced Polymer (BFRP) Bars in RC Beams and Bridge-Desk Slabs, PHD, 2016, p. 259. Sherburg (Canada). [Google Scholar]
  • H. Jamshaid, R. Mishra, A green material from rock: basalt fiber – a review, J. Textil. Inst. 107 (2016) 923–937. [CrossRef] [Google Scholar]
  • G.P. Jaysing, D.A. Joshi, Review on application of basalt fiber in civil engineering, IJLTEMAS 2 (2013) 54–57. [Google Scholar]
  • T.I. Koval, Investigation of the reliability of bridge elements reinforced with basalt plastic fibers, Mech. Compos. Mater. 53 (2017) 479–486. [CrossRef] [Google Scholar]
  • E. Monaldo, F. Nerilli, G. Vairo, Basalt-based fiber-reinforced materials and structural applications in civil engineering, Compos. Struct. (2019). [Google Scholar]
  • Z.K. Wang, X.L. Zhao, G.J. Xian, G. Wu, R.K. Singh Raman, S. Al-Saadi, Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment, Construct. Build. Mater. 139 (2017) 467–489. [CrossRef] [Google Scholar]
  • R. Parnas, M. Shaw, Q. Liu, Basalt Fiber Reinforced Polymer Composites, Technical Report NETCR63, Institute of Materials Science, University of Connecticut, 2007, p. 133. [Google Scholar]
  • S.I. Gutnikov, B.I. Lazotyak, A.N. Seleznev, Glass Fibers, M. Moscow State University, 2010, p. 53. [Google Scholar]
  • D.E. Zimin, O.S. Tatarintseva, Effects of chemical composition of glass on resistance of basalt fibers to aggressive environs, Polzunov Messenger 4–1 (2010) 160–164. [Google Scholar]
  • P. Amuthakkannan, V. Manikandan, J.T.W. Jappes, M. Uthayakumar, Hybridization effect on mechanical properties of short basalt/jute fiber-reinforced polyester composites, Sci. Eng. Compos. Mater. 20 (2013) 343–350. [CrossRef] [Google Scholar]
  • C. Arslan, M. Gogan, The mechanical and thermal properties of chopped basalt fiber-reinforced poly (butylene terephthalate) composites: effect of fiber amount and length, J. Compos. Mater. (2019). [Google Scholar]
  • I.V. Cheremukhina, Scientific and Technological Basics of Physical Modification of Polymer Composite Materials for Construction Purposes, Dissertation of Doctor of Technical Sciences, Saratov, 2016, p. 334. [Google Scholar]
  • T.M. Borhan, Thermal and mechanical properties of basalt fibre reinforced concrete, Int. J. Civ. Environ. Eng. 7 (2013) 334–337. [Google Scholar]
  • S. Cao, Z. Wu, Tensile properties of FRP composites at alevated and high temperaures, J. Appl. Mech. 11 (2008) 963–970. [CrossRef] [Google Scholar]
  • C. Colombo, L. Vergani, M. Burman, Static and fatigue characterisation of new basalt fibre reinforced composites, Compos. Struct. 94 (2012) 1165–1174. [CrossRef] [Google Scholar]
  • A.A. Dalinkevich, K.Z. Gumargalieva, S.S. Marakhovsky, A.V. Soukhanov, Modern basalt fibrous materials and basalt fiber-based polymeric composites, J. Nat. Fibers 6 (2009) 248–271. [CrossRef] [Google Scholar]
  • V. Dhand, G. Mittal, K.Y. Rhee, D. Hui, A short review on basalt fiber reinforced polymer composites, Composites Part B 73 (2015) 166–180. [CrossRef] [Google Scholar]
  • A. Dorigato, A. Pegoretti, Fatigue resistance of basalt fibers-reinforced laminates, J. Compos. Mater. 46 (2011) 1773–1785. [Google Scholar]
  • V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Compos. B Eng. 74 (2015) 74–94. [CrossRef] [Google Scholar]
  • Z. Li, J. Ma, H. Ma, X. Xu, Properties and applications of basalt fiber and its composites, IOP Conf. Ser. Earth Environ. Sci. 186 (2018) 12052. [Google Scholar]
  • Z. Lu, G. Xian, K. Rashid, Creep behavior of resin matrix and basalt fiber reinforced polymer (BFRP) plate at elevated temperatures, J. Compos. Sci. 1.3 (2017). [Google Scholar]
  • W. Mingchao, Z. Zuoguang, L. Yubin, L. Min, S. Zhijie, Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites, J. Reinforc. Plast. Compos. 27 (2008) 393–407. [CrossRef] [Google Scholar]
  • J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures, Composites Part B. 36 (2005) 504–512. [CrossRef] [Google Scholar]
  • O.S. Tatarintseva, T.K. Uglova, V.V. Samoilenko, V.V. Firsov, Effects of thermal treatment on fiber crystallization and properties of basalt wool, Polzunovsky Messenger (4-1) (2011) 160–164. [Google Scholar]
  • E. Kessler, R. Gadow, J. Straub, Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load, AIMS Mater. Sci. 3 (2016) 1561–1576. [CrossRef] [Google Scholar]
  • Z. Lu, G. Xian, Resistance of basalt fibers to elevated temperatures and water or alkaline solution immersionю, Polym. Compos. 39 (2018) 2385–2393. [Google Scholar]
  • S.M.R. Khalili, M. Najafi, R.E. Farsani, Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers, Mech. Compos. Mater. 52 (2017) 807–816. [CrossRef] [Google Scholar]
  • M. Najafi, S.M.R. Khalili, R.E. Farsani, Accelerated heat aging study of phenolic/ basalt fiber reinforced composites, Mech. Adv. Comp. Struct. 3 (2016) 1–7. [Google Scholar]
  • M.A. Ammar, Bond Durability of basalt Fiber-Reinforced Polymers (BFRP) Bars under Freeze-And-Thaw Conditions, 2014, p. 105. Thesis. Quebec, Canada. [Google Scholar]
  • M.D. Lund, Y.-Z. Yue, Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers, J. Non-Cryst. Solids 354 (2008) 1151–1154. [CrossRef] [Google Scholar]
  • A. Pandian, M. Vairavan, W.J.J. Thangaiah, M. Uthayakumar, Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites, J. Comp. 2014 (2014) 1–8. Article ID 587980. [Google Scholar]
  • E. Quagliarini, F. Monni, F. Bondioli, S. Lenci, Basalt fiber ropes and rods: durability tests for their use in building engineering, J. Build. Eng. 5 (2016) 142–150. [CrossRef] [Google Scholar]
  • P. Davies, W. Verbouwe, Evaluation of basalt fibre composites for marine applications, Appl. Compos. Mater. 25 (2018) 299–308. [CrossRef] [Google Scholar]
  • Y.-H. Kim, J.-M. Park, S.-W. Yoon, J.-W. Lee, M.-K. Jung, R.-I. Murakami, The effect of moisture absorption and gel-coating process on the mechanical properties of the basalt fiber reinforced composite, Int. J. Ocean Syst. Eng. 1 (2011) 148–154. [CrossRef] [Google Scholar]
  • D.V. Filistovich, O.V. Startsev, A.A. Kuznetsov, A.S. Krotov, L.I. Anikhovskaya, L.A. Dementeva, Effect of moisture on the anisotropy of the dynamic shear modulus of glass-reinforced plastics, Dokl. Phys. 48 (2003) 306–308. [CrossRef] [Google Scholar]
  • O.V. Startsev, D.V. Filistovich, A.A. Kuznetsov, A.S. Krotov, L.I. Anikhovskaya, L.A. Dementieva, Deformability of fiberglass sheets based on adhesive prepregs under shear loads in humid environments, Prom. Mat. (1) (2004) 20–26. [Google Scholar]
  • O.V. Startsev, K.O. Prokopenko, A.A. Litvinov, A.S. Krotov, L.I. Anikhovskaya, L.A. Dementieva, Investigation of thermal humidity aging of aircraft fiberglass, Glues Sealants Technol. 8 (2009) 18–21. [Google Scholar]
  • L.T. Startseva, S.V. Panin, O.V. Startsev, A.S. Krotov, Moisture diffusion in glassfiber-reinforced plastics after their climatic aging, Dokl. Phys. Chem. 456 (2014) 77–81. [CrossRef] [Google Scholar]
  • V.O. Startsev, V.I. Plotnikov, Yu.V. Antipov, Reversible effects of moisture in determination of mechanical properties of PKM under climatic effects, VIAM Proc. 5 (65) (2018) 110–118. [CrossRef] [Google Scholar]
  • V.O. Startsev, M.P. Lebedev, K.A. Khrulev, M.V. Molokov, A.S. Frolov, T.A. Nizina, Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers, Polym. Test. 65 (2018) 281–296. [Google Scholar]
  • N. Jain, V.K. Singh, S. Chauhan, Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites, J. Mech. Behav. Mater. 26 (2018) 5–6. [Google Scholar]
  • V. Manikandan, J.T. Jappes, S.M. Kumar, P. Amuthakkannan, Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites, Composites Part B 43 (2012) 812–818. [CrossRef] [Google Scholar]
  • G. Wu, X. Wang, Z. Wu, Z. Dong, G. Zhang, Durability of basalt fibers and composites in corrosive environments, J. Compos. Mater. 49 (2015) 873–887. [CrossRef] [Google Scholar]
  • B. Wei, H. Cao, S. Song, Tensile behavior contrast of basalt and glass fibers after chemical treatment, Mater. Des. 31 (2010) 4244–4250. [CrossRef] [Google Scholar]
  • P. Banibayat, A. Patnaik, Creep rupture performance of basalt fiber-reinforced polymer bars, J. Aero. Eng. 28 (2015) 4014074-1–4014074-9. [Google Scholar]
  • R.K.S. Raman, F. Guo, S. Al-Saadi, X.-L. Zhao, R. Jones, Understanding fibre- matrix degradation of FRP composites for advanced civil engineering applications: an overview, Corr. Mat. Degrad. 1 (2018) 27–41. [CrossRef] [Google Scholar]
  • H. Li, G. Xian, M. Ma, J. Wu, Durability and fatigue performances of basalt fiber/ epoxy reinforced bars, in: Proc. 6th Int. Conf. FRP Compos. Civ. Eng. CICE 2012, 2012, pp. 1–8. [Google Scholar]
  • Q. Liu, M.T. Shaw, R.S. Parnas, A.-M. McDonnell, Investigation of basalt fiber composite mechanical properties for applications in transportation, Polym. Compos. 27 (2006) 475–483. [Google Scholar]
  • Ya.V. Lipatov, S.I. Gutnikov, M.S. Manylov, E.S. Zhukovskaya, B.I. Lazoryak, High alkali-resistant basalt fiber for reinforcing concrete, Mater. Des. 73 (2015) 60–66. [CrossRef] [Google Scholar]
  • M. Zhu, J. Ma, A review on the usage of basalt fiber reinforced polymer (BFRP) in concrete, in: 6 th Asia-Pacific Conf. On FRP in Structures Singapore, 19-21 July 2017, 2017, p. 7. [Google Scholar]
  • M.P. Lebedev et al. Heliyon 6 (2020) e034818 [CrossRef] [PubMed] [Google Scholar]
  • G. Alaimo, A. Valenza, D. Enea, V. Fiore, The durability of basalt fibres reinforced polymer (BFRP) panels for cladding, Mater. Struct. 49 (2016) 2053–2064. [CrossRef] [Google Scholar]
  • Yu.Yu. Fedorov, F.I. Babenko, A.A. Gerasimov, G.P. Lapii, Research into effects of cold climates on mechanical properties of composite rods made from glass and basalt plastics, Ind. Civil Const. 8 (2016) 30–32. [Google Scholar]
  • A.N. Blaznov, A.S. Krasnova, A.A. Krasnov, M.E. Zhurkovsky, Geometric and mechanical characterization of ribbed FRP rebars, Polym. Test. 63 (2017) 434–439. [Google Scholar]
  • A.K. Kychkin, V.V. Popov, A.A. Kychkin, Climatic resistance of basalt composite reinforcement, Sci. Educ. (2017) 1. [Google Scholar]
  • V.O. Startsev, M.P. Lebedev, A.K. Kychkin, Influence of moderately warm and extremely cold climate on properties of basalt plastic armature, Heliyon. 4 (2018), e01060. [CrossRef] [Google Scholar]
  • Y.M. Vapirov, V.V. Krivonos, O.V. Startsev, Interpretation of the anomalous change in the properties of carbon-fiber-reinforced plastic KMU-1u during aging in different climatic regions, Mech. Compos. Mater. 30 (2) (1994) 190–194. [CrossRef] [Google Scholar]
  • A.N. Blaznov, V.F. Savin, Yu.P. Volkov, A.Ya. Rudolf, O.V. Startsev, V.B. Tikhonov, Methods of mechanical testing of composite rods, Biysk (2011) 314. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.