Open Access
Issue
BIO Web Conf.
Volume 89, 2024
The 4th Sustainability and Resilience of Coastal Management (SRCM 2023)
Article Number 01005
Number of page(s) 11
Section Environmental Monitoring and Sustainability
DOI https://doi.org/10.1051/bioconf/20248901005
Published online 23 January 2024
  • A. Z. Ayoub, and T. S. Ramasamy, “Cancer stem cells askey drivers of tumour progression,” J. Biomed. Sci, Vol 25 (2018) 1-18 [CrossRef] [Google Scholar]
  • L. Shahriyani, and N. L. Komarova, “Symmetric vs. asymmetric stem cell divisions: An adaptation against cancer?,” PLoS ONE. Vol. 8 No 10 (2013) [Google Scholar]
  • R. B. Moharil, A. Dive, S. Khandekar, and A. Bodhade, “Cancer stem cells: An insight,” J. Oral Maxillofac Pathol. Vol. 21 (2017) [Google Scholar]
  • X. Zheng,C. Yu, and M. Xu, “Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy,” Frontiers in Oncology. Vol. 11 (2021) [Google Scholar]
  • M. Prieto-Vila, R. Takahashi, W. Usuba, I. Kahoma, and T. Ochiya, “Drug resistance driven by cancer stem cells and their niche,” International Journal of Molecular Sciences. Vol. 18 (2017) 1-22 [Google Scholar]
  • M. Sreepadmanabh, and B. J. Toley, “Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics,” Biotechnology Advances. Vol. 36, No. 4 (2018) 1094-1110 [CrossRef] [Google Scholar]
  • L. Walcher, A. K. Kistenmacher, H. Suo, R. Kitte, S. Dluczek, A. Strauß, A. R. Blaudszun, T. Yevsa, S. Fricke, and U. Kossatz-Boehlert, “Cancer stem cells – Origin and biomarkers: Perspectives for targeted personalized therapies,” Front. Immunol. Vol. 11 (2020) 1-13 [CrossRef] [Google Scholar]
  • L. Yang, P. Shi, G. Zhao, J. Xu, W. Peng, J. Zhang, G. Zhang, X. Wang, Z. Dong, F. Chen, and H. Cui, “Targeting cancer stem cell pathways for cancer therapy,” Signal Transduction and Targeted Therapy. Vol. 5 (2020) [Google Scholar]
  • Y. Zhao, Q. Dong, J. Li, K. Zhang, J. Qin, J. Zhao, Q. Sun, Z. Wang, T. Wartmann, K. W. Jauch, P. J. Nelson, L. Qin, and C. Burns, “Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies,” Seminars in Cancer Biology. Vol. 53 (2018) 139-155 [CrossRef] [PubMed] [Google Scholar]
  • R. Baskar, J. Dai, N. Wenlong, R. Yeo, and K. Yeoh, “Biological response of cancer cells to radiation treatment,” Frontiers in Molecular Biosciences. Vol. 1 No. 24 (2014) [CrossRef] [Google Scholar]
  • F. A. Wati, “Pengembangan Senyawa-Senyawa Heterosiklik Nitrogen sebagai Antituberkolosis dan Antikanker”. Disertasi. Program Pendidikan S3 Kimia, Institut Teknologi Sepuluh Nopember: Surabaya (2021) [Google Scholar]
  • M. Kobayashi, S. Aoki, K. Gato, K. Matsunasmi, M. Kurosu, and I. Kitagawa, “Marine natural. products XXXIV Trisindoline, a new abiotic indole primer by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum,” Chem Pharm Bull. Vol. 42 No. 12 (1994) 2449-2451 [CrossRef] [PubMed] [Google Scholar]
  • Y. Mursyidah, and M. Santoso, “Sintesis dan sitotoksisitas 5-bromo-3-hidroksi-3-(1H-indol-3- il)indoline-2-one dan 3-hidroksi-5-kloro-1-metil-3-(1H-indol-3-il)indoline-2-one terhadap sel kanker serviks HeLa dan sel kanker kolon WiDr,” Prosiding Kimia. Institut Teknologi Sepuluh Nopember (2010) [Google Scholar]
  • L. Pertiwi, “Uji sitotoksisitas empat Trisindolina terhadap kanker payudara MCF-7 cell line,” Undergraduate Thesis. Institut Teknologi Sepuluh Nopember (2017) [Google Scholar]
  • F. A. Rahman, “Aktivitas senyawa Trisindolina 1 terhadap kadar reactive oxygen species (ROS) pada cancer stem cell,” Undergrad. Thesis. Institut Teknologi Sepuluh Nopember (2021) [Google Scholar]
  • F. A. Wati, M. Santoso, Z. Moussa, S. Fatmawati, A. Fadlan, and Z. M. A. Judeh, “Chemistry of trisindolines: natural occurrence, synthesis and bioactivity,” RSC Advances. Vol. 11 (2021) [Google Scholar]
  • G. Kroemer, W. S. El-Deiry, M. E. Peter, D. Vaux, P. Vandenebeele, B. Zhivotovsky, M. V. Blagosklonny, W. Malomi, R. A. Knight, M. Piacentini, S. Nagata, and G. Melino, “Classification of cell death; Recommendations of the nomenclature commitee on cell death,” Cell Death and Differentiation. Vol. 12 (2005) 1463-1467 [CrossRef] [PubMed] [Google Scholar]
  • K. Y. Deleon, A. Yabluchanskiy, M. D. Winniford, R. A. Lange, R. J. Chilton, and M. L. Lindsey, “Modifying matrix remodeling to prevent heart failure,” Woodhead Publishing Limited. (2014) [Google Scholar]
  • R. Dona, N. Sulistyani, and H. L. Nurani, “Uji sitotoksisitas dan antiproliferatif ekstrak etanol daun (Solanum nigrum, L.) terhadap sel raji,” Pharmaciana. Vol. 6 No. 2 (2016) [CrossRef] [Google Scholar]
  • I. Ghozali, Aplikasi analisis multivariete dengan program IBM SPSS 23 edisi 8. Jogjakarta: Badan Penerbit Universitas Diponegoro (2016) [Google Scholar]
  • H. Dana, G. Mahmoodi, V. Marmari, A. Mazraeh, and M. Ebrahimi, “An overview of cancer stem cell,” Journal of Stem Cell Research & Therapeutics. Vol. 1 No. 4 (2016) 169-174 [Google Scholar]
  • F. Rossi, H. Noren, R. Jove, V. Beljanski, and K. H. Grinnemo, “Differences and similarities between cancer and somatic stem cells: Therapeutic implications,” Stem Cell Research & Therapy. Vol. 11 No. 489 (2020) 1-16 [CrossRef] [PubMed] [Google Scholar]
  • C. Zhang, Z. Yang, D. L. Dong, T. S. Jang, J. C. Knowles, H. W. Kim, G. Z. Jin, and Y. Xuan, “3D culture technologies of cancer stem cells: Promising ex vivo tumor models,” Journal of Tissue Engineering. Vol. 11 (2018) 1-17 [Google Scholar]
  • B. W. L. Lee, P. Ghode, and D. S. T. Ong, “Redox regulation of cell state and fate,” Redox Biol. Vol. 25 (2019) 1-8 [Google Scholar]
  • F. Papaccio, F. Paino, T. Regad, G. Papaccio, V. Desiderio, and V. Tirino, “Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development,” Stem Cells Translational Medicine. Vol. 6 (2017) 2115–2125 [CrossRef] [PubMed] [Google Scholar]
  • E. H Hariyanti, and M. Santoso, “Sintesis dan uji sitotoksisitas 5-fluoro-3-hidroksi-3-(1h-indol-3- il)indolin-2-on dan 3-hidroksi-5-fluoro-1-metil-3-(1h-indol-3-il)indolin-2-on terhadap sel WiDr dan HeLa,” Prosiding Kimia. Institut Teknologi Sepuluh Nopember (2010) [Google Scholar]
  • A. Medvedev, O. Buneeva, and V. Glover, Biological targets for isatin and its analogues: Implications for therapy,” Biologics: Targets & Therapy. Vol. 1 No. 2 (2007) 151-162 [Google Scholar]
  • K. L. VIne, L. Matesic, J. M. Locke, and D. Scropeta, “Recent highlights in the development of isatin-based anticancer agents,” Advances in Anticancer Agents in Medicinal Chemistry. Vol. 2 (2013) 254-312. [CrossRef] [Google Scholar]
  • C. Isanbor, and D. O’Hagan, “Fluorine in medicinal chemistry: A review of anti-cancer agents,” Journal of Fluorine Chemistry. Vol. 127 (2006) 303-319 [CrossRef] [Google Scholar]
  • P. Shah, and A. D. Westwell, “The role of fluorine in medicinal chemistry,” Journal of Enzyme Inhibition and Medicinal Chemistry. Vol. 22 No. 5 (2007) 527-540 [CrossRef] [PubMed] [Google Scholar]
  • C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T. E. Klein, & R. B. Altman, “Doxorubicin pathways: Pharmacodynamics and adverse effect,” Journal of Pharmacogenet Genomics. Vol. 21 No. 7 (2011) [Google Scholar]
  • F. Yang, S. S. Teves, C. J. Kemp, & S. Henikoff, “Doxorubicin, DNA torsion and chromatin dynamics,” Biochimica et Biophysica Acta Journal. Vol. 1 (2014) 84-89 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.