Open Access
Issue
BIO Web Conf.
Volume 96, 2024
The 2nd Unhas International Conference on Agricultural Technology (UICAT 2023)
Article Number 01031
Number of page(s) 9
Section The Science of Food
DOI https://doi.org/10.1051/bioconf/20249601031
Published online 27 March 2024
  • H. Bakirhan and E. Karabudak, Effects of Inulin on Calcium Metabolism and Bone Health, International Journal for Vitamin and Nutrition Research 93, 85 (2023). [CrossRef] [PubMed] [Google Scholar]
  • A. Bhanja, P. P. Sutar, and M. Mishra, Inulin‐A Polysaccharide: Review on Its Functional and Prebiotic Efficacy, J Food Biochem 46, (2022). [CrossRef] [Google Scholar]
  • S. Chadha, A. Kumar, S. A. Srivastava, T. Behl, and R. Ranjan, Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer, Curr Drug Deliv 17, 651 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Y.-Q. Qin, L.-Y. Wang, X.-Y. Yang, Y.-J. Xu, G. Fan, Y.-G. Fan, J.-N. Ren, Q. An, and X. Li, Inulin: Properties and Health Benefits, Food Funct 14, 2948 (2023). [CrossRef] [PubMed] [Google Scholar]
  • S, C. N. Ginting, and S. F. Ginting, Narative Review: Potensi Inulin Umbi Dahlia Sebagai Anti Diabetes, Jurnal Keperawatan Priority 5, 53 (2022). [CrossRef] [Google Scholar]
  • V. D. Putri, S. Yanti, F. Dyna, S. Saryono, and I. Ismawati, The Extraction and Characterization of Inulin from Dahlia Bulbs (Dahlia Variabilis), in (2022), p. 030001. [Google Scholar]
  • A. Kappagantula and Vanitha S, Comparative Analysis of Extraction and Determination of Inulin by Spectrophotometric and TLC Methods from Indian Plant Sources, South Asian Journal of Experimental Biology 12, 374 (2022). [CrossRef] [Google Scholar]
  • M. Moridi Farimani, E. Ahmadi, and H. Rezadoost, Optimization of Inulin Extraction from Inula Helenium L. Using Response Surface Methodology Followed by Its MALDI-TOF and TLC-FLD Based Characterization, Journal of Medicinal Plants 21, 43 (2022). [CrossRef] [Google Scholar]
  • D. R. Manimaran, E. Swetha, S. Iswaryalakshmi, and S. Sivamani, Optimization of Inulin Extraction from Roots of Cichorium Intybus, in (2022), p. 020015. [Google Scholar]
  • A. S. Nasriddinov, A. I. Ashurov, Sh. E. Kholov, I. B. Ismoilov, S. R. Usmanova, and Z. K. Mukhidinov, Self-Aggregating Properties of Inulin in a Dilute Solution, Proceedings of Universities. Applied Chemistry and Biotechnology 12, 38 (2022). [CrossRef] [Google Scholar]
  • A. S. Nasriddinov, A. I. Ashurov, Sh. E. Kholov, I. B. Ismoilov, S. R. Usmanova, and Z. K. Mukhidinov, Self-Aggregating Properties of Inulin in a Dilute Solution, Proceedings of Universities. Applied Chemistry and Biotechnology 12, 38 (2022). [CrossRef] [Google Scholar]
  • S. Sunarti, C. N. Ginting, and S. F. Ginting, Processing of Red Dahlia Tubers in Produce Inulin Extract and Material Proximate Testing, Nusantara Science and Technology Proceedings 34 (2022). [Google Scholar]
  • S. Widowati, Potensi Inulin Sebagai Komponen Pangan Fungsional Dari Umbi Dahlia (Dahlia Pinnata L), Jurnal Pangan (2016). [Google Scholar]
  • V. A. Byzov, System Analysis of the State and Prospects for the Development of the Production of Inulin (Review), Agricultural Science Euro-North-East 23, 757 (2022). [CrossRef] [Google Scholar]
  • M. Fera, and R. Masrikhiyah, Ekstraksi Inulin Dari Umbi Gembili (Discorea Esculenta L) Dengan Pelarut Etanol, Jurnal Pangan Dan Gizi 9, 156 (2019). [Google Scholar]
  • K. Rochman, In Vitro Determination of Fe Levels and Fe Bioavaailabilities Prediction from Dahlia Tuber Syrup (Pinnata Cav.), International Journal of Current Science Research and Review 05, (2022). [CrossRef] [Google Scholar]
  • S. Sunarti, C. N. Ginting, and S. F. Ginting, Processing of Red Dahlia Tubers in Produce Inulin Extract and Material Proximate Testing, Nusantara Science and Technology Proceedings 34 (2022). [Google Scholar]
  • K. Rochman, In Vitro Determination of Fe Levels and Fe Bioavaailabilities Prediction from Dahlia Tuber Syrup (Pinnata Cav.), International Journal of Current Science Research and Review 05, (2022). [CrossRef] [Google Scholar]
  • S. Sunarti, C. N. Ginting, and S. F. Ginting, Processing of Red Dahlia Tubers in Produce Inulin Extract and Material Proximate Testing, Nusantara Science and Technology Proceedings 34 (2022). [Google Scholar]
  • N. T. , S. G. and D. P. P. Petkova, Characterization of Inulin from Dahlia Tubers Isolated by Microwave and Ultrasound-Assisted Extractions, International Food Research Journal 25(5): 1876-1884 (October 2018) (2018). [Google Scholar]
  • V. D. Putri, S. Yanti, F. Dyna, S. Saryono, and I. Ismawati, The Extraction and Characterization of Inulin from Dahlia Bulbs (Dahlia Variabilis), in (2022), p. 030001. [Google Scholar]
  • V. D. Putri, S. Yanti, F. Dyna, S. Saryono, and I. Ismawati, The Extraction and Characterization of Inulin from Dahlia Bulbs (Dahlia Variabilis), in (2022), p. 030001. [Google Scholar]
  • A. Kappagantula and Vanitha S, Comparative Analysis of Extraction and Determination of Inulin by Spectrophotometric and TLC Methods from Indian Plant Sources, South Asian Journal of Experimental Biology 12, 374 (2022). [CrossRef] [Google Scholar]
  • Z. Othman, A. Selim, S. Bayoumy, and W. Saber, Inulinase Production from Plant Materials by Some Local Yeast Strains, Journal of Agricultural Chemistry and Biotechnology 11, 71 (2020). [CrossRef] [Google Scholar]
  • X. Zhang, X. Zhu, X. Shi, Y. Hou, and Y. Yi, Extraction and Purification of Inulin from Jerusalem Artichoke with Response Surface Method and Ion Exchange Resins, ACS Omega 7, 12048 (2022). [CrossRef] [PubMed] [Google Scholar]
  • P. Maumela, E. van Rensburg, A. F. A. Chimphango, and J. F. Görgens, Sequential Extraction of Protein and Inulin from the Tubers of Jerusalem Artichoke (Helianthus Tuberosus L.), J Food Sci Technol 57, 775 (2020). [CrossRef] [PubMed] [Google Scholar]
  • I. T. Pramanda, D. Anjani, and G. Heriawan, Inulin-Producing Genes in Gembili (Dioscorea Esculenta) and Future Applications for Food Industries in Indonesia, Indonesian Journal of Life Sciences | ISSN: 2656-0682 (Online) 4, 129 (2022). [Google Scholar]
  • H. Z. Z. G. W. X. L. H. Yang Yun, Method for Extracting Inulin by Mesoporous Material Immobilized Compound Enzyme, Google Patent (2018). [Google Scholar]
  • MSc. Ir. E. H. S. Winarti, Karakterisasi Dan Evaluasi Sifat Prebiotik Inulin Umbi Gembili (Dioscorea Esculenta), Dissertation (2014). [Google Scholar]
  • I. T. Pramanda, D. Anjani, and G. Heriawan, Inulin-Producing Genes in Gembili (Dioscorea Esculenta) and Future Applications for Food Industries in Indonesia, Indonesian Journal of Life Sciences | ISSN: 2656-0682 (Online) 4, 129 (2022). [Google Scholar]
  • S. Xiao-ping, Study on Extraction and Purification of Inulin from Jerusalem Artichoke Tubers, (2007). [Google Scholar]
  • D. E. Ermawati, H. I. Fajrin, S. Rohmani, and M. N. D. Kartikasari, The Effect of Temperature Solubility on Particle Size and Antibacterial Activity of Nanosilver of Gembili’s Inulin, Pharmaciana 13, 119 (2023). [CrossRef] [Google Scholar]
  • N. Indah, Zainal, and D. Ganesa, Comparison of Freeze Drying and Foam Mat Drying Effects on Characteristics of Inulin from Gembili (Dioscorea Esculenta), IOP Conf Ser Mater Sci Eng 885, 012046 (2020). [CrossRef] [Google Scholar]
  • H. Z. Z. G. W. X. L. H. Patent Method for extracting inulin by mesoporous material immobilized compound enzyme Yang Yun, Method for Extracting Inulin by Mesoporous Material Immobilized Compound Enzyme, Patent (2018). [Google Scholar]
  • J. Shao-juan, Research on Extraction of Inulin from Helianthus Tuberosus L., (2012). [Google Scholar]
  • Zhang Meng-dan, Study on Extraction Process of Inulin from Helianthus Tuberosus, (2013). [Google Scholar]
  • Y.-Q. Qin, L.-Y. Wang, X.-Y. Yang, Y.-J. Xu, G. Fan, Y.-G. Fan, J.-N. Ren, Q. An, and X. Li, Inulin: Properties and Health Benefits, Food Funct 14, 2948 (2023). [CrossRef] [PubMed] [Google Scholar]
  • A. Laurora, M. N. Lund, B. K. Tiwari, and M. M. Poojary, Application of Ultrasound to Obtain Food Additives and Nutraceuticals, in Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound (Elsevier, 2021), pp. 111–141. [CrossRef] [Google Scholar]
  • K. V. Mahindrakar and V. K. Rathod, Ultrasound-Assisted Extraction of Lipids, Carotenoids, and Other Compounds from Marine Resources, in Innovative and Emerging Technologies in the Bio-Marine Food Sector (Elsevier, 2022) [Google Scholar]
  • Ultrasound-Assisted Extraction as a Potential Method to Enhanced Extraction of Bioactive Compound, in Nusantara Science and Technology Proceedings (Galaxy Science, 2022). [Google Scholar]
  • N. L. W. Z. L. Z. Hong Tian, Method for Extracting and Refining Inulin, (2012). [Google Scholar]
  • D. R. Manimaran, E. Swetha, S. Iswaryalakshmi, and S. Sivamani, Optimization of Inulin Extraction from Roots of Cichorium Intybus, in (2022) [Google Scholar]
  • B. Yudhistira, Siswanti, and J. C. N. Luwidharto, The Effect of Solvent Ratio and Precipitation Time on Isolation of Inulin from White Sweet Potato (Ipomoea Batatas L.), in IOP Conference Series: Earth and Environmental Science, 518 (2020). [Google Scholar]
  • P. Glibowski and A. Bukowska, Corresponding Author-Adres Do Korespondencji: Dr Inż The Effect Of Ph, Temperature And Heating Time On Inulin Chemical Stability, Acta Acta Sci. Pol., Technol. Aliment 10, 189 (2011). [Google Scholar]
  • E. M. Hellwege, S. Czapla, A. Jahnke, L. Willmitzer, and A. G. Heyer, Transgenic Potato (Solanum Tuberosum) Tubers Synthesize the Full Spectrum of Inulin Molecules Naturally Occurring in Globe Artichoke (Cynara Scolymus) Roots, n.d. [Google Scholar]
  • E. Inulin, D. Berbagai, J. Umbi, K. Magelang, L. Hartati, M. H. Septian, N. A. Fitria, R. Wulan Idayanti, and M. Sihite, Jurnal Ilmiah Peternakan Terpadu Inulin Extraction from Different Types of Tubers in Magelang District, 11, 1 (2023). [Google Scholar]
  • B. Yudhistira, S. Siswanti, and D. Anindita W, Pengaruh Rasio Pelarut Dan Waktu Pengendapan Pada Isolasi Inulin Ubi Jalar (Ipomoea Batatas), Agrointek 14, 130 (2020). [CrossRef] [Google Scholar]
  • H. Melanie, A. Susilowati, Y. M. Iskandar, P. D. Lotulung, and D. G. S. Andayani, Characterization of Inulin from Local Red Dahlia (Dahlia Sp. L) Tubers by Infrared Spectroscopy, Procedia Chem 16, 78 (2015). [CrossRef] [Google Scholar]
  • N. Wathoni, A. Haerani, N. Yuniarsih, and R. Haryanti, A Review on Herbal Cosmetics in Indonesia, International Journal of Applied Pharmaceutics. [Google Scholar]
  • M. González‐Vázquez, G. Calderón‐Domínguez, R. Mora‐Escobedo, Ma. P. Salgado‐Cruz, J. H. Arreguín‐Centeno, and R. Monterrubio‐López, Polysaccharides of Nutritional Interest in Jicama ( Pachyrhizus Erosus ) during Root Development, Food Sci Nutr 10, 1146 (2022). [CrossRef] [PubMed] [Google Scholar]
  • C. J. Park, H. Lee, and J. Han, Jicama (Pachyrhizus Erosus) Extract Increases Insulin Sensitivity and Regulates Hepatic Glucose in C57BL/Ksjjdb/Db Mice, J. Clin. Biochem. Nutr 58, 56 (2016). [CrossRef] [PubMed] [Google Scholar]
  • A. M. Ramos-de-la-Peña, C. M. G. C. Renard, L. Wicker, and J. C. Contreras-Esquivel, Advances and Perspectives of Pachyrhizus Spp. in Food Science and Biotechnology, Trends Food Sci Technol 29, 44 (2013). [CrossRef] [Google Scholar]
  • M. González-Vázquez, G. Calderón-Domínguez, R. Mora-Escobedo, M. P. Salgado-Cruz, J. H. Arreguín-Centeno, and R. Monterrubio-López, Polysaccharides of Nutritional Interest in Jicama (Pachyrhizus Erosus) during Root Development, Food Sci Nutr 10, 1146 (2022). [CrossRef] [PubMed] [Google Scholar]
  • F. R. Escobar-Ledesma, V. E. Sánchez-Moreno, E. Vera, V. Ciobotă, P. V. Jentzsch, and L. I. Jaramillo, Extraction of Inulin from Andean Plants: An Approach to Non-Traditional Crops of Ecuador, Molecules 25, 5067 (2020). [CrossRef] [PubMed] [Google Scholar]
  • M. Wimala, Y. Retaningtyas, L. Wulandari, J. Kalimantan, and N. 37 Jember, Penetapan Kadar Inulin Dalam Ekstrak Air Umbi Bengkuang (Pachyrhizus Erosus L.) Dari Gresik Jawa Timur Dengan Metode KLT Densitometri (Inulin Determination of Yam Bean Tuber (Pachyrhizus Erosus L.) from Gresik East Java Using TLC Densitometry) [Google Scholar]
  • A. A. Wijayanti and P. R. Wikandari, Potency of Fermented Jicama Extract Cultured with Lactobacillus Plantarum B1765 for Producing Short Chain Fatty Acid, Jurnal Pijar Mipa 18, 822 (2023). [CrossRef] [Google Scholar]
  • A. Tanti, Y. Retnani, and I. Soesanto, Effect Dietary Garlic Processed on Performance and Intestinal of Broilers, Jurnal Ilmu Nutrisi Dan Teknologi Pakan 21, 63 (2023). [CrossRef] [Google Scholar]
  • R. Zhao, Z. Qiu, X. Bai, L. Xiang, Y. Qiao, and X. Lu, Digestive Properties and Prebiotic Activity of Garlic Saccharides with Different-Molecular-Weight Obtained by Acidolysis, Curr Res Food Sci 5 (2022). [Google Scholar]
  • N. Kurniasih, J. Kimia, F. Sains, D. Teknologi, U. Islam, N. Sunan, and G. Djati, Sinbiotik Antara Ekstraks Inulin Dari Bawang Merah (Allium Cepa) Denganlactobacillus Casei Strain Bio 251 Dan Uji Bioaktivitasnya Terhadap Bakteri Penyebab Diare, VI, (2012). [Google Scholar]
  • J. Aisara, P. Wongputtisin, S. Deejing, C. Maneewong, K. Unban, C. Khanongnuch, P. Kosma, M. Blaukopf, and A. Kanpiengjai, Potential of Inulin-Fructooligosaccharides Extract Produced from Red Onion (Allium Cepa Var. Viviparum (Metz) Mansf.) as an Alternative Prebiotic Product, Plants 10, 2401 (2021). [CrossRef] [PubMed] [Google Scholar]
  • J. Aisara et al., Purification and Characterization of Crude Fructooligosaccharides Extracted from Red Onion (Allium Cepa Var. Viviparum) by Yeast Treatment, Microb Cell Fact 23, 17 (2024). [CrossRef] [PubMed] [Google Scholar]
  • M. V. Lara, D. T. Montalvo-Villacreses, J. Nuñez, and A. Perez, Optimization of Inulin Extraction from Garlic (Allium Sativum L.) Waste Using the Response Surface Methodology [Google Scholar]
  • F. Esmaeili, M. Hashemiravan, M. R. Eshaghi, and H. Gandomi, Optimization of Aqueous Extraction Conditions of Inulin from the Arctium Lappa L. Roots Using Ultrasonic Irradiation Frequency, J Food Qual 2021, 1 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.