Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00002 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/bioconf/20249700002 | |
Published online | 05 April 2024 |
- E. K. Njim, S. H. Bakhy, and M. Al-Waily, “Analytical and numerical free vibration analysis of porous functionally graded materials (FGPMs) sandwich plate using Rayleigh-Ritz method,” Archives of Materials Science and Engineering, vol. 1, no. 110. Index Copernicus, pp. 27–41, Jul. 01, 2021. DOI: 10.5604/01.3001.0015.3593. [CrossRef] [Google Scholar]
- B. Saleh et al., “30 Years of functionally graded materials: An overview of Manufacturing Methods, Applications and Future Challenges,” Composites Part B: Engineering, vol. 201. Elsevier BV, p. 108376, Nov. 2020. DOI: 10.1016/j.compositesb.2020.108376. [CrossRef] [Google Scholar]
- A. Garg, M. O. Belarbi, H. D. Chalak, and A. Chakrabarti, “A review of the analysis of sandwich FGM structures,” Composite Structures, vol. 258. Elsevier BV, p. 113427, Feb. 2021. DOI: 10.1016/j.compstruct.2020.113427. [CrossRef] [Google Scholar]
- A. Mouthanna, S. H. Bakhy, M. Al-Waily, and E. K. Njim, “Free Vibration Investigation of Single-Phase Porous FG Sandwich Cylindrical Shells: Analytical, Numerical and Experimental Study,” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. Springer Science and Business Media LLC, Aug. 29, 2023. DOI: 10.1007/s40997-023-00700-7. [Google Scholar]
- F. Kiarasi, M. Babaei, P. Sarvi, K. Asemi, M. Hosseini, and M. Omidi Bidgoli, “A review on functionally graded porous structures reinforced by graphene platelets,” J Appl. Comput. Appl. Mech., vol. 52, no. 4, Dec. 2021, DOI: 10.22059/jcamech.2021.335739.675. [Google Scholar]
- M. Babaei, K. Asemi, P. Safarpour, “Natural Frequency and Dynamic Analyses of Functionally Graded Saturated Porous Beam Resting on Viscoelastic Foundation Based on Higher Order Beam Theory,” Journal of Solid Mechanics, vol. 11, no. 3, pp. 615–634, 2019. DOI: 10.22034/JSM.2019.666691 [Google Scholar]
- M. Al-Waily, M. J. Jweeg, M. A. Al-Shammari, K. K. Resan, and A. M. Takhakh, “Improvement of Buckling Behavior of Composite Plates Reinforced with Hybrids Nanomaterials Additives,” Materials Science Forum, vol. 1039. Trans Tech Publications, Ltd., pp. 23–41, Jul. 20, 2021. DOI: 10.4028/www.scientific.net/msf.1039.23. [CrossRef] [Google Scholar]
- E.K. Njim, S.H. Bakhy, M. Al-Waily, “Analytical and Numerical Investigation of Buckling Behavior of Functionally Graded Sandwich Plate with Porous Core,” Journal of Applied Science and Engineering vol. 25, no. 2, Apr. 2022, DOI: 10.6180/jase.202204_25(2).0010. [Google Scholar]
- Y. Sitli, K. Mhada, O. Bourihane, and H. Rhanim, “Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the Asymptotic Numerical Method,” Structures, vol. 31. Elsevier BV, pp. 1031–1040, Jun. 2021. DOI: 10.1016/j.istruc.2021.01.100. [CrossRef] [Google Scholar]
- H. Yaghoobi and F. Taheri, “Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets,” Composite Structures, vol. 252. Elsevier BV, p. 112700, Nov. 2020. DOI: 10.1016/j.compstruct.2020.112700. [CrossRef] [Google Scholar]
- M. Babaei, K. Asemi, and P. Safarpour, Buckling and Static Analyses of Functionally Graded Saturated Porous Thick Beam Resting on Elastic Foundation Based on Higher Order Beam Theory, Iranian Society of Mechanical Engineering, vol. 20, no. 1, pp. 94–112, 2019. [Google Scholar]
- A. A. Daikh and A. M. Zenkour, “Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory,” Materials Research Express, vol. 6, no. 11. IOP Publishing, p. 115707, Oct. 11, 2019. DOI: 10.1088/2053-1591/ab48a9. [CrossRef] [Google Scholar]
- M. Babaei, K. Asemi, and F. Kiarasi, “Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method,” Mechanics Based Design of Structures and Machines, vol. 51, no. 3. Informa UK Limited, pp. 1272–1296, Dec. 30, 2020. DOI: 10.1080/15397734.2020.1864401. [Google Scholar]
- J. Kim, K. K. Żur, and J. N. Reddy, “Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates,” Composite Structures, vol. 209. Elsevier BV, pp. 879–888, Feb. 2019. DOI: 10.1016/j.compstruct.2018.11.023. [CrossRef] [Google Scholar]
- M. Babaei and K. Asemi, “Stress analysis of functionally graded saturated porous rotating thick truncated cone,” Mechanics Based Design of Structures and Machines, 2020. DOI: 10.1080/15397734.2020.1753536 [Google Scholar]
- Kiarasi F., Babaei M., Dimitri R., et al., “Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation,” Continuum Mech. Thermodyn, vol. 33, pp. 911932, 2021. DOI: 10.1007/s00161-020-00929-6 [CrossRef] [Google Scholar]
- J.F. Wang, S.H. Cao, W. Zhang, “Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate,” European Journal of Mechanics-A/Solids, vol. 85, 2021. DOI: 10.1016/j.euromechsol.2020.104105 [Google Scholar]
- M. Sobhy, “Size-dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory,” International Journal of Applied Mechanics, vol. 12, no. 2, 2020. DOI: 10.1142/S1758825120500179 [CrossRef] [Google Scholar]
- S.J. Singh, S.P. Harsha, “Buckling analysis of FGM plates under uniform, linear and nonlinear in-plane loading,” Journal of Mechanical Science and Technology, vol. 33, pp. 1761–1767, 2019. DOI: 10.1007/s12206-019-0328-8 [CrossRef] [Google Scholar]
- M.D. Sciuva, M. Sorrenti, “Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory,” Composite Structures, vol. 227, 2019. DOI: 10.1016/j.compstruct.2019.111324 [CrossRef] [Google Scholar]
- C. Li, H.-S. Shen, H. Wang, and Z. Yu, “Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core,” International Journal of Mechanical Sciences, vol. 174. Elsevier BV, p. 105472, May 2020. DOI: 10.1016/j.ijmecsci.2020.105472. [CrossRef] [Google Scholar]
- V. N. Burlayenko and T. Sadowski, “Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements,” Meccanica, vol. 55, no. 4. Springer Science and Business Media LLC, pp. 815–832, Jul. 01, 2019. DOI: 10.1007/s11012-019-01001-7. [Google Scholar]
- S. Singh and S. Harsha, “Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov’s method,” Journal of Sandwich Structures & Materials, vol. 23, no. 5. SAGE Publications, pp. 1717–1760, Feb. 10, 2020. DOI: 10.1177/1099636220904340. [Google Scholar]
- M. Babaei, K. Asemi, and F. Kiarasi, “Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials,” Thin-Walled Structures, vol. 164. Elsevier BV, p. 107852, Jul. 2021. DOI: 10.1016/j.tws.2021.107852. [CrossRef] [Google Scholar]
- M. Arefi and F. Najafitabar, “Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method,” Thin-Walled Structures, vol. 158. Elsevier BV, p. 107200, Jan. 2021. DOI: 10.1016/j.tws.2020.107200. [CrossRef] [Google Scholar]
- P. Van Vinh and L. Q. Huy, “Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory,” Defence Technology, vol. 18, no. 3. Elsevier BV, pp. 490–508, Mar. 2022. DOI: 10.1016/j.dt.2021.03.006. [CrossRef] [Google Scholar]
- M. Tam, Z. Yang, S. Zhao, and J. Yang, “Vibration and Buckling Characteristics of Functionally Graded Graphene Nanoplatelets Reinforced Composite Beams with Open Edge Cracks,” Materials, vol. 12, no. 9. MDPI AG, p. 1412, Apr. 30, 2019. DOI: 10.3390/ma12091412. [CrossRef] [PubMed] [Google Scholar]
- M. Babaei, M. H. Hajmohammad, and K. Asemi, “Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity,” Aerospace Science and Technology, vol. 96. Elsevier BV, p. 105524, Jan. 2020. DOI: 10.1016/j.ast.2019.105524. [CrossRef] [Google Scholar]
- M. Babaei, F. Kiarasi, S. M. Hossaeini Marashi, M. Ebadati, F. Masoumi, and K. Asemi, “Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical cylindrical-conical shell,” Waves in Random and Complex Media. Informa UK Limited, pp. 1–33, Dec. 22, 2021. DOI: 10.1080/17455030.2021.2003478. [CrossRef] [Google Scholar]
- F. Kiarasi, M. Babaei, K. Asemi, R. Dimitri, and F. Tornabene, “Three-Dimensional Buckling Analysis of Functionally Graded Saturated Porous Rectangular Plates under Combined Loading Conditions,” Applied Sciences, vol. 11, no. 21. MDPI AG, p. 10434, Nov. 06, 2021. DOI: 10.3390/app112110434. [CrossRef] [Google Scholar]
- F. Kiarasi, M. Babaei, S. Mollaei, M. Mohammadi, and K. Asemi, “Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets,” Advances in nano research, vol. 11, no. 4, pp. 361–380, Oct. 2021, DOI: 10.12989/ANR.2021.11.4.361. [Google Scholar]
- P. V. Vinh, “Analysis of bi-directional functionally graded sandwich plates via higher-order shear deformation theory and finite element method,” Journal of Sandwich Structures & amp; Materials, vol. 24, no. 2. SAGE Publications, pp. 860–899, Jul. 06, 2021. DOI: 10.1177/10996362211025811. [Google Scholar]
- D. H. Doan, T. Van Do, N. X. Nguyen, P. Van Vinh, and N. T. Trung, “Multi-phase-field modelling of the elastic and buckling behaviour of laminates with ply cracks,” Applied Mathematical Modelling, vol. 94. Elsevier BV, pp. 68–86, Jun. 2021. DOI: 10.1016/j.apm.2020.12.038. [CrossRef] [Google Scholar]
- L. Hadji, A. Fallah, and M. M. Aghdam, “Influence of the distribution pattern of porosity on the free vibration of functionally graded plates,” Structural Engineering and Mechanics, vol. 82, no. 2, pp. 151–161, Apr. 2022, DOI: 10.12989/SEM.2022.82.2.151. [Google Scholar]
- H. M. Lu, W. Zhang, and J. J. Mao, “Buckling Analyses of Functionally Graded Graphene Nanoplatelets Reinforced Nonlocal Piezoelectric Microplate,” IOP Conference Series: Materials Science and Engineering, vol. 774, no. 1. IOP Publishing, p. 012103, Mar. 01, 2020. DOI: 10.1088/1757-899x/774/1/012103. [CrossRef] [Google Scholar]
- L. Czechowski, Z. Kołakowski, Analysis of the Functionally Step-Variable Graded Plate Under In-Plane Compression, Materials 12/24 (2019). DOI: 10.3390/ma12244090 [Google Scholar]
- E. K. Njim, S. H. Bakhy, and M. Al-Waily, “Analytical and Numerical Investigation of Free Vibration Behavior for Sandwich Plate with Functionally Graded Porous Metal Core,” Pertanika Journal of Science and Technology, vol. 29, no. 3. Universiti Putra Malaysia, Jul. 31, 2021. DOI: 10.47836/pjst.29.3.39. [Google Scholar]
- ASTM D638, Standard test method for tensile properties of plastics, Annual Book of ASTM Standards, American Society of Testing and Materials, West Conshohocken, 2014. [Google Scholar]
- ASTM E 8M-00b, Standard Test Methods for Tension Testing of Metallic Materials [Metric], An American National Standard 2, 2001. [Google Scholar]
- ASTM E1251-94, Standard Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Argon Atmosphere, Point-to-Plane, Unipolar Self-Initiating Capacitor Discharge, ASTM International, 1999. [Google Scholar]
- E. K. Njim, S. H. Bakhy, and M. Al-Waily, “Optimisation Design of Functionally Graded Sandwich Plate with Porous Metal Core for Buckling Characterisations,” Pertanika Journal of Science and Technology, vol. 29, no. 4. Universiti Putra Malaysia, Oct. 29, 2021. DOI: 10.47836/pjst.29.4.47. [Google Scholar]
- E. K. Njim, “Analytical and numerical flexural properties of polymeric porous functionally graded (PFGM) sandwich beams,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 110, no. 1. Index Copernicus, pp. 5–10, Jan. 01, 2022. DOI: 10.5604/01.3001.0015.7026. [CrossRef] [Google Scholar]
- Njim, E. K., Sadiq, S. E., Tahir, M. S. A.-D., Flayyih, M. A., & Hadji, L. (2023). Flexural Bending and Fatigue Analysis of Functionally Graded Viscoelastic Materials: Experimental and Numerical Approaches. In Physics and Chemistry of Solid State (Vol. 24, Issue 4, pp. 628–639). Vasyl Stefanyk Precarpathian National University. https://doi.org/10.15330/pcss.24.4.628-639 [CrossRef] [Google Scholar]
- Jweeg, M. J., Njim, E. K., Abdullah, O. S., Al-Shammari, M. A., Al-Waily, M., & Bakhy, S. H. (2023). Free Vibration Analysis of Composite Cylindrical Shell Reinforced with Silicon Nano-Particles: Analytical and FEM Approach. In Physics and Chemistry of Solid State (Vol. 24, Issue 1, pp. 26–33). Vasyl Stefanyk Precarpathian National University. https://doi.org/10.15330/pcss.24.1.26-33 [CrossRef] [Google Scholar]
- K.-F. Arndt and M. D. Lechner, Eds., Polymer Solids and Polymer Melts-Mechanical and Thermomechanical Properties of Polymers. Springer Berlin Heidelberg, 2014. DOI: 10.1007/978-3-642-55166-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.