Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00011
Number of page(s) 9
DOI https://doi.org/10.1051/bioconf/20249700011
Published online 05 April 2024
  • P. Wang, Ch. Chan and A.-L. de Fortelle, A Reinforcement Learning Based Approach for Automated Lane Change Maneuvers, 2018 IEEE Intelligent Vehicles Symposium (IV), China, 2018. [Google Scholar]
  • M. Naeem, S.T.H. Rizvi, and A. Coronato, A Gentle Introduction to Reinforcement Learning and Its Application in Different Fields”, IEEE ACCESS 8, 2020. [Google Scholar]
  • G.U.O. Tong, N. Jiang, L.I. Biyue, Z.H.U. Xi, Y. Wang, UAV navigation in high dynamic environments: A deep reinforcement learning approach, Chinese Journal of Aeronautics, Production and hosting by Elsevier 2020. [Google Scholar]
  • Parag Kulkarni, “Reinforcement and Systemic Machine Learning for Decision Making”, Published by John Wiley & Sons, Inc., Hoboken, Published simultaneously in Canada (IEEE series on systems science and engineering; ISBN 9780-470-91999-6. [Google Scholar]
  • Chris Watkins, “Learning from Delayed Rewards”, thesis submitted for phd in, king’s college, London, 1989. [Google Scholar]
  • Bakr S. Shihab, Hadeel N. Abdullah and Layth A. Hassnawi, ‘Obstacle Avoidance and Path Planning for UAV Using Laguerre Polynomial’, International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022, DOI: 10.22266/ijies2022.1231.58 [Google Scholar]
  • Marco Wiering and Martijn van Otterlo (Eds.), “Reinforcement Learning State-of-the-Art’, ISSN 1867-4534, ISBN 978-3-642-27644-6, DOI: 10.1007/978-3-642-27645-3, Springer [Google Scholar]
  • F.A. Raheem, A.T. Sadiq, N. A. F. Abbas, Robot Arm Free Cartesian Space Analysis for Heuristic Path Planning Enhancement”, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 19(01) 2019. [Google Scholar]
  • A.T. Sadiq, and A. H. Hasan, Robot Path Planning Based on PSO and D Algorithms in Dynamic Environment, International Conference on Current Research in Computer Science and Information Technology (ICCIT), Slemani - Iraq 2017 [Google Scholar]
  • Bakr S. Shihab, Hadeel N. Abdullah and Layth A. Hassnawi, ‘Improved Artificial Bee Colony Algorithm-based Path Planning of Unmanned Aerial Vehicle Using Late Acceptance Hill Climbing’, International Journal of Intelligent Engineering and Systems, vol. 15, no. 6, 2022, DOI: 10.22266/ijies2022.1231.39. [Google Scholar]
  • Nuha H. Abdulghafoor and Hadeel N. Abdullah, ‘A novel real-time multiple objects detection and tracking framework for different challenges’, Alexandria Engineering Journal, Volume 61, Issue 12, December 2022, Pages 9637-9647. [Google Scholar]
  • Nuha H. Abdulghafoor and Hadeel N. Abdullah, ‘Multiple Object Detection, Multiple Object Tracking, Classification, Deep-learning, Principal Component Pursuit’, Alexandria Engineering Journal, 2020. [Google Scholar]
  • J. Qin, X. Han, and G. Liu et al., “Path Planning Method of Mobile Robot Based on Q-learning, Journal of Physics: Conference Series, 2022. [Google Scholar]
  • H.S. Lee, and J. Jeong, Mobile Robot Path Optimization Technique Based on Reinforcement Learning Algorithm in Warehouse Environment, Appl. Sci. 11(2021) 1209. https://doi.org/10.3390/app11031209 [CrossRef] [Google Scholar]
  • R.S. Sutton, and A.G. Barto, Introduction to Reinforcement Learning, 2nd ed.; MIT Press: London, UK (2018) 1–528 [Google Scholar]
  • B. Jang, M. Kim, G. Harerimana, J.W. Kim, Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE 7 (2019) 133653–133667 [Google Scholar]
  • W.-G. Han, S.M. Baek, and T.Y. Kuc, Genetic algorithm-based path planning and dynamic obstacle avoidance of mobile robots. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA 1997. [Google Scholar]
  • Siding Li, Xin Xu, Lei Zuo, ‘Dynamic Path Planning of a Mobile Robot with Improved Q-Learning algorithm’, Proceeding of the 2015 IEEEInternational Conference on Information and Automation, Lijiang, China, August 2015. [Google Scholar]
  • Ee Soong Low, Pauline Ong, Kah Chun Cheah, Solving the optimal path planning of a mobile robot using improved Q-learning’, Robotics and utonomous Systems journal homepage: www.elsevier.com/locate/robot, in 2019. [Google Scholar]
  • Monira Essa Aloud and Nora Al Khamees, ‘Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change’, IEEE ACCESS, 2021 [Google Scholar]
  • Talal Bonny and Mariam Kashkash, ‘Highly optimized Q-learning-based bees’ approach for mobile robot path planning in static and dynamic environments’, J Field Robotics. 2022; 39:317–334.4, wileyonlinelibrary.com/journal/rob, 2022. [CrossRef] [Google Scholar]
  • He Du, Bing Hao, Jian Shuo Zhao, Jiamin Zhang, Qi Wang, Qi Yuan, ‘Apathplanning approach for mobile robots using short and safe Q-learning’, PLOSONE, https://doi.org/10.1371/journal.pone.0275100, September 26, 2022. [Google Scholar]
  • N. Kohl, and P. Stone, Policy gradient reinforcement learning for fast quadrupedal locomotion. In: International Conference on Robotics and Automation. IEEE 2004. [Google Scholar]
  • Nadia I. Khalil, Hadeel N. Abdullah and Layth A. Hassnawi, ‘A Hybrid Modified ABC-PSO Algorithm for Optimal Robotic Path Planner’, Date Added to IEEE Xplore: 17 April 2023, DOI: 10.1109/DeSE58274.2023.10100021. [Google Scholar]
  • M.A.K. Jaradat, M. Al-Rousan, L. Quadan, Reinforcement based mobile robot navigation in dynamic environment”, Robotics and Computer-Integrated Manufacturing 27 (2011). [PubMed] [Google Scholar]
  • M. Kirtas, K. Tsampazis, N. Passalis, A. Deepbots, A Webots-Based Deep Reinforcement Learning Framework for Robotics. In Proceedings of the 16th IFIP WG 12.5 International Conference AIAI 2020, Marmaras, Greece, (2020) 64–75 [Google Scholar]
  • V.N. Sichkar, Reinforcement Learning Algorithms in Global Path Planning for Mobile Robot. In Proceedings of the 2019 International Conference on Industrial Engineering Applications and Manufacturing, Sochi, Russia 2019. [Google Scholar]
  • F.A. Raheem, A.T. Sadiq, N. A. F. Abbas, Optimal Trajectory Planning of 2-DOF Robot Arm Using the Integration of PSO Based on D Algorithm and Cubic Polynomial Equation”, The first for Conference engineering researches 2017. [Google Scholar]
  • L. Jiang, R. Wei and D. Wang, Multi-UAV Roundup Inspired by Hierarchical Cognition Consistency Learning Based on an Interaction Mechanism, Drones 7(2023) 462. [CrossRef] [Google Scholar]
  • S.S. Mousavi, M. Schukat, and E. Howley, Traffic light control using deep policy gradient and value-function-based reinforcement learning, IET The Institution of Engineering and Technology 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.