Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00012
Number of page(s) 19
DOI https://doi.org/10.1051/bioconf/20249700012
Published online 05 April 2024
  • Malik, T.G. (2021). Artificial Intelligence in Ophthalmology. Pakistan Journal of Ophthalmology, 37(1).A. Lohrasebi, T. Koslowski, Modeling water purification by an aquaporin-inspired graphene-based nano-channel. J. Mol. Model. 25, 280 (2019). https://doi.org/10.1007/s00894-019-4160-y [CrossRef] [PubMed] [Google Scholar]
  • Badah, N., Algefes, A., AlArjani, A. and Mokni, R. (2022). “Automatic Eye Disease Detection Using Machine Learning and Deep Learning Models. Pervasive Computing and Social Networking”, pp. 773–787. DOI: https://doi.org/10.1007/978-981-19-2840-658 [Google Scholar]
  • Medical Tourism Mexico, Diabetic retinopathy information and locations in Mexico, US owned and operated since 2017, https://www.medicaltourismex.com/specialties/ophthalmologist/diabeticretinopathy [Google Scholar]
  • World Health Organization. Elimination of Avoidable Visual Disability Due to Refractive Errors: Report of an Informal Planning Meeting. In Proceedings of the Informal Planning Meeting, Geneva, Switzerland, 3-5 July 2000; Technical Report; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
  • Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208. [CrossRef]. [CrossRef] [PubMed] [Google Scholar]
  • Singh, R.; Kaur, R.; Kaur, N. Survey on Detection of various Retinal Manifestations of Eye. Res. Cell Int. J. Eng. Sci. 2016, 20, 177–283. [Google Scholar]
  • EssilorLuxottica, Understanding glaucoma, https://global.essilor.com/UK/blog/what-affects-theeyes/understanding-glaucoma. [Google Scholar]
  • Kankanala, L.M.; Jayashree, G.; Balakrishnan, R.; Bhargava, A. Automated cataract grading using slit-lamp images with machine learning. J. Ophthalmol. 2021, 2021. [CrossRef] [Google Scholar]
  • Yang, W.; Yu, J.; Jia, Y.; Qin, Y.; Zhang, L.; Liu, J. Deep learning-based automatic cataract diagnosis on fundus images. IEEE Trans. Med. Imaging 2021, 40, 1888–1899. [CrossRef] [PubMed] [Google Scholar]
  • Ophthalmic Consultants of the Capital Region, About Cataracts, https://ophthalmicconsultants.com/cataracts/what-are-cataracts. [Google Scholar]
  • Al-Dulaimi, H.W., Aldhahab, A. and Al Abboodi, H.M., 2023. Speaker Identification System Employing Multi-resolution Analysis in Conjunction with CNN. International Journal of Intelligent Engineering & Systems, 16(5). [Google Scholar]
  • Y. Wu and Z. Hu, “Recognition of diabetic retinopathy based on transfer learning,” 2019 IEEE 4th Int. Conf. Cloud Comput. Big Data Anal. ICCCBDA 2019, pp. 398–401, 2019, DOI: 10.1109/ICCCBDA.2019.8725801. [Google Scholar]
  • M. S. Patil and S. Chickerur, “Study of Data and Model parallelism in Distributed Deep learning for Diabetic retinopathy Classification,” Procedia Comput. Sci., vol. 218, pp. 2253–2263, 2022, DOI: 10.1016/j.procs.2023.01.201 [CrossRef] [Google Scholar]
  • B. O. F. Technology, U. The, and G. Of, “DEEP LEARNING-BASED SEVERITY PREDICTION FOR DIABETIC RETINOPATHY Project report submitted in partial fulfillment of the requirement for the degree of,” no. May, 2021. [Google Scholar]
  • T. Daghistani, “Using Artificial Intelligence for Analyzing Retinal Images (OCT) in People with Diabetes: Detecting Diabetic Macular Edema Using Deep Learning Approach,” Trans. Mach. Learn. Artif. Intell., vol. 10, no. 1, pp. 41–49, 2022, DOI: 10.14738/tmlai.101.11805. [CrossRef] [Google Scholar]
  • N. Islam, U. Saeed, R. Naz, J. Tanveer, K. Kumar, and A. A. Shaikh, “DeepDR: An image guide diabetic retinopathy detection technique using attention-based deep learning scheme,” 2019 2nd Int. Conf. New Trends Comput. Sci. ICTCS 2019 - Proc., pp. 1–6, 2019, DOI: 10.1109/ICTCS.2019.8923097. [Google Scholar]
  • K. Swathi, E. S. N. Joshua, B. D. Reddy, and N. T. Rao, “Diabetic Retinopathy Detection Using Deep Learning,” ASSIC 2022 - Proc. Int. Conf. Adv. Smart, Secur. Intell. Comput., pp. 1–5, 2022, DOI: 10.1109/ASSIC55218.2022.10088331. [Google Scholar]
  • M. S. Patil, S. Chickerur, C. Abhimalya, A. Naik, N. Kumari, and S. Maurya, “Effective Deep Learning Data Augmentation Techniques for Diabetic Retinopathy Classification,” Procedia Comput. Sci., vol. 218, pp. 1156–1165, 2022, DOI: 10.1016/j.procs.2023.01.094. [CrossRef] [Google Scholar]
  • M. A. Manan, T. M. Khan, A. Saadat, M. Arsalan, and S. S. Naqvi, “A Residual Encoder-Decoder Network for Segmentation of Retinal Image-Based Exudates in Diabetic Retinopathy Screening,” 2022, [Online]. Available: http://arxiv.org/abs/2201.05963. [Google Scholar]
  • M. Chetoui and M. A. Akhloufi, “Explainable Diabetic Retinopathy using EfficientNET,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 1966–1969, 2020, DOI: 10.1109/EMBC44109.2020.9175664. [Google Scholar]
  • P. Sharma and A. K. Sandhu, “Deep Transfer Learning Methods for the Prediction of Diabetic Eye Disease: An Experimental Analysis,” pp. 1510–1514, 2023, DOI: 10.1109/icacite57410.2023.10183277. [Google Scholar]
  • M. Alghamdi and M. Abdel-Mottaleb, “A Comparative Study of Deep Learning Models for Diagnosing Glaucoma from Fundus Images,” IEEE Access, vol. 9, pp. 23894–23906, 2021, DOI: 10.1109/ACCESS.2021.3056641. [CrossRef] [Google Scholar]
  • G. Gutte, B. Khaire, V. Harne, R. Shamalik, and S. Chippalkatti, “Detection of Glaucoma Eye Disease Using Deep Learning,” 2023 IEEE Int. Conf. Smart Inf. Syst. Technol., pp. 257–260, 2023, DOI: 10.1109/sist58284.2023.10223519. [Google Scholar]
  • V. V. N. S. Kumar, G. Harinath Reddy, and M. N. GiriPrasad, “A novel glaucoma detection model using Unet++-based segmentation and ResNet with GRU-based optimized deep learning,” Biomed-Signal Process. Control, vol. 86, no. PA, p. 105069, 2023, DOI: 10.1016/j.bspc.2023.105069. [CrossRef] [Google Scholar]
  • H. A. Hosni Mahmoud and E. Alabdulkreem, “Bidirectional Neural Network Model for Glaucoma Progression Prediction,” J. Pers. Med., vol. 13, no. 3, 2023, DOI: 10.3390/jpm13030390. [CrossRef] [Google Scholar]
  • S. Faizal, C. Anant, R. Tripathi, B. Verma, M. Ranjan, and S. Sachin, “Biomedical Signal Processing and Control Automated Cataract Disease Detection on Anterior Segment Eye Images using Adaptive Thresholding and Fine-tuned Inception-v3 model Biomed. Signal Process. Control, vol. 82, no. November 2022, p. 104550, 2023, DOI: 10.1016/j.bspc.2022.104550. [CrossRef] [Google Scholar]
  • Y. Kumar and B. Gupta, “Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images,” Biomed. Signal Process. Control, vol. 84, no. February, p. 104776, 2023, DOI: 10.1016/j.bspc.2023.104776. [CrossRef] [Google Scholar]
  • M. Londhe, “Classification of Eye Diseases using Hybrid CNN-RNN Models MSc Research Project Data Analytics,” 2021. [Google Scholar]
  • M. Smaida and Y. Serhii, “Comparative Study of Image Classification Algorithms for Eyes Diseases Diagnostic,” Int. J. Innov. Sci. Res. Technol., vol. 4, no. 12, 2019, [Online]. Available: www.ijisrt.com40. [Google Scholar]
  • P. Jain, Analysis and Detection of Eye Diseases Using Deep Learning Methodology, 2023, [Online]. Available: http://www.dspace.dtu.ac.in:8080/jspui/handle/repository/19843%0A http://www.dspace.dtu.ac.in:8080/jspui/bitstream/repository/19843/1/PallavJainM.Tech.pdf. [Google Scholar]
  • M. Smaida, S. Yaroshchak, and A. Y. Ben Sasi, “Learning Rate Optimization in CNN for Accurate Ophthalmic Classification,” Int. J. Innov. Technol. Explore. Eng., vol. 10, no. 4, pp. 211–216, 2021, DOI: 10.35940/ijitee.b8259.0210421. [CrossRef] [Google Scholar]
  • S. Prince, “An Online Platform for Early Eye Disease Detection using Deep Convolutional Neural Networks, 2022 6th Int. Conf. Devices, Circuits Syst., no. April, pp. 388–392, 2022, DOI: 10.1109/ICDCS54290.2022.9780765. [Google Scholar]
  • D. Helen and S. Gokila, “EYENET: An Eye Disease Detection System using Convolutional Neural Network,” Proc. 2nd Int. Conf. Edge Comput. Appl. ICECAA 2023, no. Icecaa, pp. 839–842, 2023, DOI: 10.1109/ICECAA58104.2023.10212139. [Google Scholar]
  • S. Yaroshchak, M. Smaida, and Y. El Barg, “Medical image enhancement based on convolutional denoising autoencoders and GMD model,” CEUR Workshop Proc., vol. 2917, pp. 96–106, 2021. [Google Scholar]
  • N. Thien Le, T. Thanh Le, and W. Benjapolakul, “Classification of age-related macular degeneration using intense learning neural network based on transfer learning Rath Itthipanichpong King Chulalongkorn Memorial Hospital Pear Ferreira Pongsachareonnont King Chulalongkorn Memorial Hospital Apivat Mavichak King Chulalongkorn Memorial Hospital Disorn Suwajanakorn King Chulalongkorn Memorial Hospital,” pp. 0–14, 2022, [Online]. Available: https://doi.org/10.21203/rs.3.rs-2294957/v1 [Google Scholar]
  • S. Prasher, L. Nelson, and S. Gomathi, “Automated Eye Disease Classification using MobileNetV3 and EfficientNetB0 Models using Transfer Learning,” 2023 World Conf. Commun. Comput., pp. 1–5, 2023, DOI: 10.1109/wconf58270.2023.10235193. [Google Scholar]
  • T. Babaqi, M. Jaradat, A. E. Yildirim, S. H. Al-Nimer, and D. Won, “Eye Disease Classification Using Deep Learning Techniques,” 2023, [Online]. Available: http://arxiv.org/abs/2307.10501. [Google Scholar]
  • S. Yaroshchak and M. Smaida, “GMD Model Based on Multi-Label Classification for Detection and Diagnosis of Eye Diseases,” no. September, 2022. [Google Scholar]
  • P. Kumar, S. Bhandari, and V. Dutt, “Pre-Trained Deep Learning-Based Approaches for Eye Disease Detection,” Proc. Int. Conf. Circuit Power Comput. Technol. ICCPCT 2023, pp. 1286–1290, 2023, DOI: 10.1109/ICCPCT58313.2023.10245175. [CrossRef] [Google Scholar]
  • P. Glaret Subin and P. Muthukannan, “Optimized convolution neural network based multiple eye disease detection,” Comput. Biol. Med., vol. 146, no. January, p. 105648, 2022, DOI: 10.1016/j.compbiomed.2022.105648. [CrossRef] [Google Scholar]
  • S. Vellakani and I. Pushbam, “An enhanced OCT image captioning system to assist ophthalmologists in detecting and classifying eye diseases,” J. Xray. Sci. Technol., vol. 28, no. 5, pp. 975–988, 2020, DOI: 10.3233/XST-200697. [Google Scholar]
  • S. A. Toki, S. Rahman, S. M. Mohtasim, B. Fahim, A. Al Mostakim, and K. Rhaman, RetinalNet-500: A newly developed CNN Model for Eye Disease Detection, 2022 2nd Int. Mobile, Intelligent, Ubiquitous Comput. Conf., pp. 459–463, 2022, DOI: 10.1109/MIUCC55081.2022.9781785. [CrossRef] [Google Scholar]
  • B. D. K. Perera, W. A. A. I. Wickramarathna, S. Chandrasiri, W. A. P. W. Wanniarachchi, S. H. N. Dilshani, and N. Pemadasa, UveaTrack: Uveitis Eye Disease Prediction and Detection with Vision Function Calculation and Risk Analysis, 2022 IEEE 13th Annu. Inf. Technol. Electron. Mob. Commun. Conf. IEMCON 2022, pp. 88–93, 2022, DOI: 10.1109/IEMCON56893.2022.9946505. [Google Scholar]
  • I. K. Gupta, A. Choubey, and S. Choubey, “Mayfly optimization with deep learning enabled retinal fundus image classification model,” Comput. Electr. Eng., vol. 102, no. June, p. 108176, 2022, DOI: 10.1016/j.compeleceng.2022.108176. [CrossRef] [Google Scholar]
  • K. Mohamad Almustafa, A. Kumar Sharma, and S. Bhardwaj, STARC: Deep learning Algorithms’ modeling for STructured analysis of retina classification, Biomed. Signal Process. Control, vol. 80, no. P2, p. 104357, 2023, DOI: 10.1016/j.bspc.2022.104357. [Google Scholar]
  • Al Abboodi, H.M., Al-Funjan, A.W., Hamza, N.A., Abdullah, A.H. and Shami, B.H., 2023. Supervised Transfer Learning for Multi Organs 3D Segmentation With Registration Tools for Metal Artifact Reduction in CT Images. TEM Journal, 12(3). [Google Scholar]
  • S. A. Kamran, K. Fariha Hossain, A. Tavakkoli, S. Zuckerbrod, S. A. Baker, and K. M. Sanders, Fundus2Angio: A Conditional GAN Architecture for Generating Fluorescein Angiography Images from Retinal Fundus Photography, vol. 12510 LNCS. Springer International Publishing, 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.