Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00019
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/20249700019
Published online 05 April 2024
  • A. Sunyaev and A. Sunyaev, “Cloud computing,” Internet Computing: Principles of Distributed Systems and Emerging Internet-Based Technologies, pp. 195–236, 2020. [Google Scholar]
  • N. J. Piscataway, “Artificial Intelligence and Machine Learning, Cloud Computing, and 5G Will Be the Most Important Technologies in 2022, Says New IEEE Study,” IEEE, 2021. [Google Scholar]
  • M. Frederick, “Risk of Cloud Breaches Rising, Teams Struggling to Address Them, Fugue and Sonatype Survey Finds,” Fugue and Sonatype, 2021. Accessed: Nov. 14, 2023. [Online]. Available: https://www.fugue.co/press/releases/risk-of-cloud-breaches-rising-teams-struggling-to-address-them-fugue-and-sonatype-survey-finds [Google Scholar]
  • S. B. Sadkhan, “Security of Cloud Networks-Status, Challenges and Future Trends,” in 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), IEEE, 2022, pp. 247–252. [CrossRef] [Google Scholar]
  • S. M. Alturfi, B. Al-Musawi, and H. A. Marhoon, “An advanced classification of cloud computing security techniques: A survey,” in AIP Conference Proceedings, AIP Publishing, 2020. [PubMed] [Google Scholar]
  • L. Erhan et al., “Smart anomaly detection in sensor systems: A multi-perspective review,” Information Fusion, vol. 67, pp. 64–79, 2021. [CrossRef] [Google Scholar]
  • P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011. [Google Scholar]
  • W. Jansen and T. Grance, “Guidelines on security and privacy in public cloud computing,” 2011. [Google Scholar]
  • E. Geetha Rani and D. T. Chetana, “A Survey of Recent Cloud Computing Data Security and Privacy Disputes and Defending Strategies,” in Congress on Smart Computing Technologies, Springer, 2023, pp. 407–418. [CrossRef] [Google Scholar]
  • B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, “A systematic literature review on cloud computing security: threats and mitigation strategies,” IEEE Access, vol. 9, pp. 57792–57807, 2021. [CrossRef] [Google Scholar]
  • D. Moore, C. Shannon, and K. Claffy, “Code-Red: a case study on the spread and victims of an Internet worm,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, 2002, pp. 273–284. [Google Scholar]
  • K. D. D. Cup, Available on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Ocotber, 2007. [Google Scholar]
  • M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” in 2009 IEEE symposium on computational intelligence for security and defense applications, Ieee, 2009, pp. 1–6. [Google Scholar]
  • A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection algorithms--the Numenta anomaly benchmark,” in 2015 IEEE 14th international conference on machine learning and applications (ICMLA), IEEE, 2015, pp. 38–44. [CrossRef] [Google Scholar]
  • N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW- NB15 network data set),” in 2015 military communications and information systems conference (MilCIS), IEEE, 2015, pp. 1–6. [Google Scholar]
  • I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization.,” ICISSp, vol. 1, pp. 108–116, 2018. [Google Scholar]
  • M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based benchmark data sets for intrusion detection,” in Proceedings of the 16th European conference on cyber warfare and security. ACPI, 2017, pp. 361–369. [Google Scholar]
  • N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset,” Future Generation Computer Systems, vol. 100, pp. 779–796, 2019. [CrossRef] [Google Scholar]
  • A. Aldribi, I. Traore, and B. Moa, “Data sources and datasets for cloud intrusion detection modeling and evaluation,” Cloud computing for optimization: foundations, applications, and challenges, pp. 333–366, 2018. [CrossRef] [Google Scholar]
  • I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy,” in 2019 International Carnahan Conference on Security Technology (ICCST), IEEE, 2019, pp. 1–8. [Google Scholar]
  • A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems,” Ieee Access, vol. 8, pp. 165130–165150, 2020. [CrossRef] [Google Scholar]
  • F. Lomio, D. M. Baselga, S. Moreschini, H. Huttunen, and D. Taibi, “Rare: a labeled dataset for cloud-native memory anomalies,” in Proceedings of the 4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for Software-Quality Evaluation, 2020, pp. 19–24. [Google Scholar]
  • M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “X-IIoTID: A connectivity-agnostic and device-agnostic intrusion data set for industrial Internet of Things,” IEEE Internet Things J., vol. 9, no. 5, pp. 3962–3977, 2021. [Google Scholar]
  • E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A. Ghorbani, “CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT environment,” 2023. [Google Scholar]
  • T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong, “Self-adaptive cloud monitoring with online anomaly detection,” Future Generation Computer Systems, vol. 80, pp. 89–101, 2018. [CrossRef] [Google Scholar]
  • F. Guigou, P. Collet, and P. Parrend, “SCHEDA: Lightweight euclidean-like heuristics for anomaly detection in periodic time series,” Appl Soft Comput, vol. 82, p. 105594, 2019. [CrossRef] [Google Scholar]
  • L. Khatibzadeh, Z. Bornaee, and A. Ghaemi Bafghi, “Applying catastrophe theory for network anomaly detection in cloud computing traffic,” Security and Communication Networks, vol. 2019, 2019. [CrossRef] [Google Scholar]
  • F. Schmidt, F. Suri-Payer, A. Gulenko, M. Wallschläger, A. Acker, and O. Kao, “Unsupervised anomaly event detection for cloud monitoring using online arima,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), IEEE, 2018, pp. 71–76. [CrossRef] [Google Scholar]
  • C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang, “Time series anomaly detection for trustworthy services in cloud computing systems,” IEEE Trans Big Data, vol. 8, no. 1, pp. 60–72, 2017. [Google Scholar]
  • M. F. Din and S. Qazi, “A compressed framework for monitoring and anomaly detection in cloud networks,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, 2018, pp. 1–7. [Google Scholar]
  • T. L. Yasarathna and L. Munasinghe, “Anomaly detection in cloud network data,” in 2020 International Research Conference on Smart Computing and Systems Engineering (SCSE), IEEE, 2020, pp. 62–67. [CrossRef] [Google Scholar]
  • M. S. Islam and A. Miranskyy, “Anomaly detection in cloud components,” in 2020 IEEE 13th international conference on cloud computing (CLOUD), IEEE, 2020, pp. 1–3. [Google Scholar]
  • P. Ntambu and S. A. Adeshina, “Machine learning-based anomalies detection in cloud virtual machine resource usage,” in 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), IEEE, 2021, pp. 1–6. [Google Scholar]
  • P. Parameswarappa, T. Shah, and G. R. Lanke, “A Machine Learning-Based Approach for Anomaly Detection for Secure Cloud Computing Environments,” in 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), IEEE, 2023, pp. 931–940. [Google Scholar]
  • J. Jiang et al., “AERF: Adaptive ensemble random fuzzy algorithm for anomaly detection in cloud computing,” Comput Commun, vol. 200, pp. 86–94, 2023. [CrossRef] [Google Scholar]
  • A. S. Saljoughi, M. Mehrvarz, and H. Mirvaziri, “Attacks and intrusion detection in cloud computing using neural networks and particle swarm optimization algorithms,” Emerging Science Journal, vol. 1, no. 4, pp. 179–191, 2017. [Google Scholar]
  • B. Zhu, J. Li, R. Gu, and L. Wang, “An approach to cloud platform log anomaly detection based on natural language processing and lstm,” in Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence, 2020, pp. 1–7. [Google Scholar]
  • L. Girish and S. K. N. Rao, “Anomaly detection in cloud environment using artificial intelligence techniques,” Computing, vol. 105, no. 3, pp. 675–688, 2023. [CrossRef] [Google Scholar]
  • O. I. Khalaf, K. A. Ogudo, and S. K. B. Sangeetha, “Design of graph-based layered learning-driven model for anomaly detection in distributed cloud IoT network,” Mobile Information Systems, vol. 2022, pp. 1–9, 2022. [Google Scholar]
  • Y. Song, R. Xin, P. Chen, R. Zhang, J. Chen, and Z. Zhao, “Identifying performance anomalies in fluctuating cloud environments: A robust correlative-GNN-based explainable approach,” Future Generation Computer Systems, vol. 145, pp. 77–86, 2023. [CrossRef] [Google Scholar]
  • S. Garg, K. Kaur, N. Kumar, S. Batra, and M. S. Obaidat, “HyClass: Hybrid classification model for anomaly detection in cloud environment,” in 2018 IEEE International Conference on Communications (ICC), IEEE, 2018, pp. 1–7. [Google Scholar]
  • N. Ding, H. Gao, H. Bu, and H. Ma, “RADM: Real-time anomaly detection in multivariate time series based on Bayesian network,” in 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, 2018, pp. 129–134. [CrossRef] [Google Scholar]
  • P. Lou, Y. Yang, and J. Yan, “An anomaly detection method for cloud service platform,” in Proceedings of the 2019 4th International Conference on Machine Learning Technologies, 2019, pp. 70–75. [Google Scholar]
  • C. Yang, “Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment,” Cluster Comput, vol. 22, pp. 8309–8317, 2019. [CrossRef] [Google Scholar]
  • Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, “New anomaly network intrusion detection system in cloud environment based on optimized back propagation neural network using improved genetic algorithm,” International Journal of Communication Networks and Information Security, vol. 11, no. 1, pp. 61–84, 2019. [CrossRef] [Google Scholar]
  • X. Zhang et al., “Cross-dataset time series anomaly detection for cloud systems,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp. 1063–1076. [Google Scholar]
  • X. Yu, T. Li, and A. Hu, “Time-series network anomaly detection based on behaviour characteristics,” in 2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, 2020, pp. 568–572. [CrossRef] [Google Scholar]
  • G. S. Lalotra, V. Kumar, A. Bhatt, T. Chen, and M. Mahmud, “iReTADS: an intelligent real-time anomaly detection system for cloud communications using temporal data summarization and neural network,” Security and Communication Networks, vol. 2022, pp. 1–15, 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.