Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00020
Number of page(s) 11
DOI https://doi.org/10.1051/bioconf/20249700020
Published online 05 April 2024
  • N. Koduri, “Information security through image steganography using least significant bit algorithm,” Master Thesis, Information Security and Computer Forensics University of East London, 2011 [Google Scholar]
  • G. Lanel, T. Jinasena, and B. J. I. Welihinda, “A Survey of Public-Key Cryptography over Non-Abelian Groups,” vol. 21, no. 4, p. 289, 2021. [Google Scholar]
  • S. Dhall, S. K. Pal, and K. Sharma, “Cryptanalysis of image encryption scheme based on a new 1D chaotic system,” Signal Processing., vol. 146, pp. 22–32, May. 2018 [CrossRef] [Google Scholar]
  • C. Fu, J.-J. Chen, H. Zou, W.-H. Meng, Y.-F. Zhan, and Y.-W. Yu, “A chaos-based digital image encryption scheme with an improved diffusion strategy,” Optics Express, vol. 20, no. 3, pp. 2363–2378, 2012. [CrossRef] [PubMed] [Google Scholar]
  • P. Ping, J. Wu, Y. Mao, F. Xu, and J. Fan, “Design of image cipherusing life-like cellular automata and chaotic map,” Signal Processing., vol. 150, pp. 233–247, Sep. 2018. [CrossRef] [Google Scholar]
  • A. Kamal, E. A. Hagras, H. J. C. S. El-Kamchochi, and I. Systems, “Dynamic fractional chaotic biometric isomorphic elliptic curve for partial image encryption,”, pp. 18–18, 2021. [Google Scholar]
  • S. Capozziello, R. Pinčák, and E. J. S. Bartoš, “A Supersymmetry and Quantum Cryptosystem with Path Integral Approach in Biology,” vol. 12, no. 8, p. 1214, 2020. [Google Scholar]
  • N. Khalil, A. Sarhan, M. A. J. O. Alshewimy, and L. Technology, “An efficient color/grayscale image encryption scheme based on hybrid chaotic maps,” vol. 143, p. 107326, 2021. [Google Scholar]
  • Wilson, Jenny. “The geometry and topology of braid groups.” RTG Geometry Topology Summer School. University of Chicago 2018. [Google Scholar]
  • H. S. Razaq; S. A. Albermany; and H. H. Abbass, “Fuzzy Extractor Computation for Cryptography Based on Braid RADG Group,” Master thesis, Faculty of Computer Science and Mathematics, University of Kufa, 2019. [Google Scholar]
  • Qu, Shao Cheng, Di Liu, and Li Wang. “Synchronization of hyper-chaotic Lorenz system and its application in secure communication.” Key Engineering Materials. vol. 467. Trans Tech Publications Ltd, 2011. [Google Scholar]
  • R. Jing-Ya, S. Ke-Hui, and M. J. A. P. S. Jun, “Memristor-based Lorenz hyper-chaotic system and its circuit implementation,” vol. 65, p. 190502, 2016. [Google Scholar]
  • K. Shahna and A. J. S. P. I. C. Mohamed, “Novel hyper chaotic color image encryption based on pixel and bit level scrambling with diffusion,” vol. 99, p. 116495, 2021. [Google Scholar]
  • X. Zhang, L. Wang, Y. Niu, G. Cui, & S. Geng (2019). Image Encryption Algorithm Based on the H-Fractal and Dynamic Self-Invertible Matrix. Computational intelligence and neuroscience, 2019. [Google Scholar]
  • C. Dobraunig, M. Eichlseder, F. J. I. F. A. I. P. Mendel, and G. U. o. T. Communications, “Security Evaluation of SHA-224, SHA-512/224, and SHA-512/256,” 2015. [Google Scholar]
  • Y. Wu, J. P. Noonan, S. J. C. j. m. j. i. s. Agaian, and J. o. S. A. i. T. technology, “NPCR and UACI randomness tests for image encryption,” vol. 1, no. 2, pp. 31–38, 2011. [Google Scholar]
  • X. Wang, X. Zhu, and Y. Zhang, “An image encryption al-gorithm based on josephus traversing and mixed chaoticmap,” IEEE Access, vol. 6, p. 23733–23746, 2018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.