Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00024
Number of page(s) 10
DOI https://doi.org/10.1051/bioconf/20249700024
Published online 05 April 2024
  • Kortli, Yassin, et al. “Face recognition systems: A survey.” Sensors 20.2 (2020): 342. [CrossRef] [PubMed] [Google Scholar]
  • Taskiran, Murat, Nihan Kahraman, and Cigdem Eroglu Erdem. “Face recognition: Past, present and future (a review).” Digital Signal Processing 106 (2020): 102809. [CrossRef] [Google Scholar]
  • Payal, Parekh, and Mahesh M. Goyani. “A comprehensive study on face recognition: methods and challenges.” The Imaging Science Journal 68.2 (2020): 114–127. [CrossRef] [Google Scholar]
  • Dalvi, Jash, et al. “A survey on face recognition systems.” arXiv preprint 2201.02991 (2022). [Google Scholar]
  • Tomar, Vivek, Nitin Kumar, and Ayush Raj Srivastava. “Single sample face recognition using deep learning: a survey.” Artificial Intelligence Review 56.Suppl 1 (2023): 1063–1111. [CrossRef] [Google Scholar]
  • Wilkes, David, and John K. Tsotsos. Active object recognition. vol. 3. University of Toronto, 1994. [Google Scholar]
  • Z. Wu, Q. Ke, J. Sun and H. Y. Shum “Scalable face image retievale with identity-based quantization and multireference reranking”, Ieee transactions on pattern analysis and machine inelligence, vol, 33pp.1991–2001, 2011’ [CrossRef] [PubMed] [Google Scholar]
  • H. C. Kim, D. Kim, and S. Y. Bang, “Face retrieval using 1st-and 2nd-order PCA mixture model”, in International Conference on Image Processing, Rochester, New York, pp. 605–608, 2002 [Google Scholar]
  • T. K. Kim, H. Kim, W. Hwang, and J. Kittler, “Componentbased LDA face description for imageretrieval and MPEG-7 standardisation”, Image and Vision Computing, vol. 23, pp. 631–642, 2005 [CrossRef] [Google Scholar]
  • Mliki, H., Dammak, S., & Fendri, E. (2020). An improved multi-scale face detection using convolutional neural network. SIGNAL IMAGE AND VIDEO PROCESSING. [Google Scholar]
  • Dong, Z., Wei, J., Chen, X., & Zheng, P. (2020). Face Detection in Security Monitoring Based on Artificial Intelligence Video Retrieval Technology. IEEE Access, 8, 63421–63433. [CrossRef] [Google Scholar]
  • Lu, W. Y., & Ming, Y. A. N. G. (2019, June). Face detection based on Viola-Jones algorithm applying composite features. In 2019 International Conference on Robots & Intelligent System (ICRIS), pp. 82–85. [CrossRef] [Google Scholar]
  • Kirana, K. C., Wibawanto, S., Hidayah, N., & Cahyono, G. P. (2019, September). Ant System for face detection. In 2019 International Seminar on Application for Technology of Information and Communication (iSemantic) (pp. 152–156). IEEE. [CrossRef] [Google Scholar]
  • Yi, Y. C., & Feng, G. (2018, November). Face Detection Algorithm with Multi-stage Decision Based on Skin-color and Geometrical Features. In 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 39–42. [CrossRef] [Google Scholar]
  • Jun, Z., Jizhao, H., Zhenglan, T., & Feng, W. (2017, October). Face detection based on LBP. In 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI) (pp. 421–425). IEEE. [Google Scholar]
  • J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, Perth, Australia, 1942–1948, 1995. [Google Scholar]
  • Kennedy, J., Eberhart, R., (1995), “Particle Swarm Optimization”, in Proc.IEEE Int. Conf. Neural Netw, 4(1), pp. 1942–1948. [CrossRef] [Google Scholar]
  • Kennedy, J., Shi, Y., (2000), “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization”, in Proc. Congr. Evol.Comput., pp. 84–88. [Google Scholar]
  • Clerc, M., (2001), “The Particle Swam - Explosion, Stability, and Convergence in a Multidimensional Complex Space”, IEEE Trans. Evolutionary., 6(1), pp. 58–73. [Google Scholar]
  • Xing, B., & Gao, W. J. (2014). Imperialist competitive algorithm. In Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms (pp. 203–209). Springer International Publishing [CrossRef] [Google Scholar]
  • E. Atashpaz-Gargari, C. Lucas, “Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition,” IEEE Congress on Evolutionary Computation 7, pp 4661–4666, 2007. [Google Scholar]
  • Podilchuk C. and Zhang X., “Face Recognition Using DCT-Based Feature Vectors,” Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, pp. 2147, 1996-2144. [Google Scholar]
  • Yankun, Z. and Chongqing, L., “Efficient Face Recognition Method based on DCT and LDA”, Journal of Systems Engineering and Electronics, vol. 15, no. 2, pp. 211–216, 2004. [Google Scholar]
  • Matos, F. M., Batista, L. V. and Poel, J., “Face Recognition Using DCT Coefficients Selection,”, CM Symposium on Applied Computing, (SAC,( pp. 1753–1757, 2008. [Google Scholar]
  • Hung, Bui Thanh. “Face recognition using hybrid HOG-CNN approach.” Research in Intelligent and Computing in Engineering. Springer, Singapore, 2021. 715–723. [Google Scholar]
  • Al-Dujaili, Mohammed Jawad, Hydr Jabar Sabat Ahily, and Ahmed Fatlawi. “Hybrid approach for optimizing the face recognition based on SIFT, SURF and HOG features.” AIP Conference Proceedings. vol. 2977. no. 1. AIP Publishing, 2023. [Google Scholar]
  • Wiskott, L., et al., Face recognition by elastic bunch graph matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997. 19(7): p. 775–779. [CrossRef] [Google Scholar]
  • Liu C., and Wechsler H., “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition”, IEEE Transactions On Image Processing, vol. 11, no. 4, pp. 467–476, 2002. [CrossRef] [PubMed] [Google Scholar]
  • L. Yu, Z. He, and Q. Cao, “Gabor texture representation method for face recognition using the Gamma and generalized Gaussian models,” Image Vis. Comput., vol. 28, no. 1, pp. 177–187, 2010. [CrossRef] [Google Scholar]
  • Chaudhari, Vaibhav, and Ankur Dumka. “An Introduction to Principal Component Analysis and Its Applications.” Handbook of Research on Artificial Intelligence and Knowledge Management in Asia’s Digital Economy. IGI Global, 2023. 300–316. [Google Scholar]
  • Peng, Peng, et al. “A face recognition software framework based on principal component analysis.” Plos one 16.7 (2021): e0254965. [CrossRef] [PubMed] [Google Scholar]
  • Lowe, David G. “Object recognition from local scale-invariant features.” Proceedings of the seventh IEEE international conference on computer vision. vol. 2. Ieee, 1999. [Google Scholar]
  • Joshi, Ameet V. “Support vector machines.” Machine learning and artificial intelligence. Cham: Springer International Publishing, 2022. 89–99. [Google Scholar]
  • Lei, Wenli, et al. “Support Vector Machines Optimisation for Face Recognition Using Sparrow Search Algorithm.” Traitement du Signal 40.5 (2023). [Google Scholar]
  • Jing, Chi, et al. “Face Recognition Based on Deep Convolutional Support Vector Machine with Bottleneck Attention.” IAENG International Journal of Computer Science 49.4 (2022). [Google Scholar]
  • Zhi, Hui, and Sanyang Liu. “Face recognition based on genetic algorithm.” Journal of Visual Communication and Image Representation 58(2019): 495–502. [CrossRef] [Google Scholar]
  • Pedergnana, M., Marpu, P. R., Dalla Mura, M., Benediktsson, J. A., Bruzzone, L., “A Novel Technique for Optimal Feature Selection inAttribute Profiles Based on Genetic Algorithms,” Geoscience and Remote Sensing, IEEE Transactions on, pp 1–15, 2013 [Google Scholar]
  • S. Choi and B. R. Moon, “Feature Selection in Genetic Fuzzy Discretization for the Pattern Classification Problems”, IEICE Trans.INF. & SYST, vol. E90-D., No. 7, July 2007. [Google Scholar]
  • Sharma, Sudha, Mayank Bhatt, and Pratyush Sharma. “Face recognition system using machine learning algorithm.” 2020 5th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2020. [Google Scholar]
  • Dujaili, Mohammed Jawad AI. “Survey on facial expressions recognition: databases, features and classification schemes.” Multimedia Tools and Applications (2023): 1–22. [Google Scholar]
  • Suzuki, K. (2013), “Artificial Neural Networks: Architectures and Applications”. [CrossRef] [Google Scholar]
  • Wen, C. Zhuo, J. and Chen, C.S. (2014), “Recent Advances in Radial Basis Function Collocation Methods,” Springer Heidelberg New York Dordrecht London. [Google Scholar]
  • Hrasko, R., Pacheco, A. G., & Krohling, R. A. (2015). Time series prediction using restricted boltzmann machines and backpropagation. Procedia Computer Science, 55, 990–999. [CrossRef] [Google Scholar]
  • Ying, C. A. I., Yang, M. L., & Jun, L. I. (2015). Multiclass classification based on a deep convolutional. Frontiers of Information Technology & Electronic Engineering, 16(11), 930–939. [CrossRef] [Google Scholar]
  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2016). A survey of deep neural network architectures and their applications. Neurocomputing. [Google Scholar]
  • Breiman, L. “Random forests”, Machine learning, vol. 45, p-p.5–32, 2001. [CrossRef] [Google Scholar]
  • Alpaydin, E. (2018, October). Classifying multimodal data. In The Handbook of Multimodal-Multisensor Interfaces (pp. 49–69). Association for Computing Machinery and Morgan & Claypool. [Google Scholar]
  • Al-Dujaili, Mohammed Jawad, Hydr Jabar Sabat Ahily, and Ahmed Fatlawi. “Gender recognition of human based on speech characteristics by features fusion with K_NN and MLPNN classifications.” AIP Conference Proceedings. vol. 2977. no. 1. AIP Publishing, 2023. [Google Scholar]
  • Al Dujaili, Mohammed Jawad, and Abbas Ebrahimi-Moghadam. “Automatic speech emotion recognition based on hybrid features with ANN, LDA and K_NN classifiers.” Multimedia Tools and Applications (2023): 1–19. [Google Scholar]
  • Leiva-Valenzuela, G. A., Mariotti, M., Mondragón, G., & Pedreschi, F. (2018). Statistical pattern recognition classification with computer vision images for assessing the furan content of fried dough pieces. Food chemistry, 239, 718–725. [CrossRef] [PubMed] [Google Scholar]
  • Jieping Ye and Qi Li. (2004), “LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation,” Pattern Recognition, Volume 37, Issue 4, April 2004, Pages 851–854, Agent Based Computer Vision. [CrossRef] [Google Scholar]
  • Zhao, Haitao, and Pong Chi Yuen. “Incremental linear discriminant analysis for face recognition.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38.1 (2008): 210–221. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.