Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00044 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/20249700044 | |
Published online | 05 April 2024 |
- M. A. Alohali et al., “Blockchain-Driven Image Encryption Process with Arithmetic Optimization Algorithm for Security in Emerging Virtual Environments,” Sustain., 15, no. 6, 2023, DOI: 10.3390/su15065133. [Google Scholar]
- I. Aouissaoui, T. Bakir, and A. Sakly, “Robustly correlated key-medical image for DNA-chaos based encryption,” IET Image Process., vol. 15, no. 12, pp. 2770–2786, 2021, DOI: 10.1049/ipr2.12261. [CrossRef] [Google Scholar]
- N. H. Sharkawy, Y. M. Afify, W. Gad, and N. Badr, “Gray-Scale Image Encryption Using DNA Operations,” IEEE Access, vol. 10, pp. 63004–63019, 2022. [CrossRef] [Google Scholar]
- Y. Zhang, L. Zhang, Z. Zhong, L. Yu, M. Shan, and Y. Zhao, “Hyperchaotic image encryption using phase-truncated fractional Fourier transform and DNA-level operation,” Opt. Lasers Eng., vol. 143, no. April, p. 106626, 2021, DOI: 10.1016/j.optlaseng.2021.106626. [CrossRef] [Google Scholar]
- R. Rivest, “The MD5 message-digest algorithm,” 1992. [Google Scholar]
- V. Mekathoti and B. Nithya, A Survey on Congestion Control Algorithms of Wireless Body Area Network, vol. 735 LNEE. 2021. [Google Scholar]
- H. Liu and X. Wang, “Color image encryption based on one-time keys and robust chaotic maps,” Comput. Math. with Appl., vol. 59, no. 10, pp. 3320–3327, 2010, DOI: 10.1016/j.camwa.2010.03.017. [CrossRef] [Google Scholar]
- X. Wang, W. Xue, and J. An, “Image encryption algorithm based on LDCML and DNA coding sequence,” Multimed. Tools Appl., vol. 80, no. 1, pp. 591–614, 2021, DOI: 10.1007/s11042-020-09688-7. [CrossRef] [Google Scholar]
- E. Z. Zefreh, “An image encryption scheme based on a hybrid model of DNA computing, chaotic systems and hash functions,” Multimed. Tools Appl., vol. 79, no. 33-34, pp. 24993–25022, 2020, DOI: 10.1007/s11042-020-09111-1. [CrossRef] [Google Scholar]
- P. W. Khan and Y. Byun, “A blockchain-based secure image encryption scheme for the industrial internet of things,” Entropy, 22, no. 2, 2020, DOI: 10.3390/e22020175. [Google Scholar]
- U. Zia et al., “Survey on image encryption techniques using chaotic maps in spatial, transform and spatiotemporal domains,” Int. J. Inf. Secur., vol. 21, no. 4, pp. 917–935, 2022, DOI: 10.1007/s10207-022-00588-5. [CrossRef] [Google Scholar]
- A. Soni and A. Kumar Acharya, “A Novel Image Encryption Approach using an Index based Chaos and DNA Encoding and its Performance Analysis,” Int. J. Comput. Appl., vol. 47, no. 23, pp. 1–6, 2012, DOI: 10.5120/7493-9944. [Google Scholar]
- J. Liu, Y. Ma, S. Li, J. Lian, and X. Zhang, “A new simple chaotic system and its application in medical image encryption,” Multimed. Tools Appl., vol. 77, no. 17, pp. 22787–22808, 2018, DOI: 10.1007/s11042-017-5534-8. [CrossRef] [Google Scholar]
- X. Liu and T. Zhu, “Deep learning for constructing microblog behavior representation to identify social media user’s personality,” PeerJ Comput. Sci., 2016, no. 9, 2016, DOI: 10.7717/peerj-cs.81. [Google Scholar]
- P. Zhen, G. Zhao, L. Min, and X. Jin, “Chaos-based image encryption scheme combining DNA coding and entropy,” Multimed. Tools Appl., vol. 75, no. 11, pp. 6303–6319, 2016, DOI: 10.1007/s11042-015-2573-x. [CrossRef] [Google Scholar]
- S. Chirakkarottu and S. Mathew, “A novel encryption method for medical images using 2D Zaslavski map and DNA cryptography,” SN Appl. Sci., 2, no. 1, 2020, DOI: 10.1007/s42452-019-1685-8. [CrossRef] [Google Scholar]
- A. Belazi and A. A. A. El-latif, “Author ’ s Accepted Manuscript,” Signal Processing, 2016, DOI: 10.1016/j.sigpro.2016.03.021. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.