Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00045
Number of page(s) 15
DOI https://doi.org/10.1051/bioconf/20249700045
Published online 05 April 2024
  • H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng, “Cybersecurity data science: an overview from machine learning perspective,” J Big Data, Vol. 7, pp. 1–29, 2020. [CrossRef] [Google Scholar]
  • M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-based intrusion detection data sets,” Comput Secur, Vol. 86, pp. 147–167, 2019. [CrossRef] [Google Scholar]
  • K. Kim, M. E. Aminanto, and H. C. Tanuwidjaja, Network intrusion detection using deep learning: a feature learning approach. Springer, 2018. [CrossRef] [Google Scholar]
  • G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti, “On the effectiveness of machine and deep learning for cyber security,” in 2018 10th international conference on cyber Conflict (CyCon), IEEE, 2018, pp 371–390. [CrossRef] [Google Scholar]
  • N. Bakhareva, A. Shukhman, A. Matveev, P. Polezhaev, Y. Ushakov, and L. Legashev, “Attack detection in enterprise networks by machine learning methods,” in 2019 international Russian automation conference (RusAutoCon), IEEE, 2019, pp. 1–6. [Google Scholar]
  • https://www.spiceworks.com/it-security/cyber-risk-management/articles/what-is-brute-force-attack/ [Google Scholar]
  • https://rublon.com/blog/brute-force-dictionary-attack-difference/ [Google Scholar]
  • B. K. Bhavitha, A. P. Rodrigues, and N. N. Chiplunkar, “Comparative study of machine learning techniques in sentimental analysis,” in 2017 International conference on inventive communication and computational technologies (ICICCT), IEEE, 2017, pp. 216–221. [Google Scholar]
  • S. Das, A. Dey, A. Pal, and N. Roy, “Applications of artificial intelligence in machine learning: review and prospect,” Int J Comput Appl, 115, no. 9, 2015. [Google Scholar]
  • M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R. Zuech, “Machine learning for detecting brute force attacks at the network level,” in 2014 IEEE International Conference on Bioinformatics and Bioengineering, IEEE, 2014, pp. 379–385. [CrossRef] [Google Scholar]
  • J. Hancock, T. M. Khoshgoftaar, and J. L. Leevy, “Detecting SSH and FTP Brute Force Attacks in Big Data,” in Proceedings - 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 760–765. DOI: 10.1109/ICMLA52953.2021.00126. [Google Scholar]
  • D. Stiawan, M. Idris, R. F. Malik, S. Nurmaini, N. Alsharif, and R. Budiarto, “Investigating brute force attack patterns in IoT network,” Journal of Electrical and Computer Engineering, Vol. 2019, 2019. [CrossRef] [Google Scholar]
  • M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R. Zuech, “Machine learning for detecting brute force attacks at the network level,” in 2014 IEEE International Conference on Bioinformatics and Bioengineering, IEEE2014, pp. 379–385., [CrossRef] [Google Scholar]
  • A. Satoh, Y. Nakamura, and T. Ikenaga, “SSH dictionary attack detection based on flow analysis,” in 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet, IEEE, 2012, pp [Google Scholar]
  • S. Kahara Wanjau, G. M. Wambugu, and G. Ndung’u Kamau, “SSH-Brute Force Attack Detection Model based on Deep Learning,” 2021. [Online]. Available: www.ijcat.com [Google Scholar]
  • S. K. Wanjau, G. M. Wambugu, and G. N. Kamau, “SSH-brute force attack detection model based on deep learning,” 2021. [Google Scholar]
  • L. Zhou, X. Ouyang, H. Ying, L. Han, Y. Cheng, and T. Zhang, “Cyber-attack classification in smart grid via deep neural network,” in Proceedings of the 2nd international conference on computer science and application engineering, 2018, pp. 1–5. [Google Scholar]
  • M. D. Hossain, H. Ochiai, F. Doudou, and Y. Kadobayashi, “Ssh and ftp brute-force attacks detection in computer networks: Lstm and machine learning approaches,” in 2020 5th international conference on computer and communication systems (ICCCS), IEEE, 2020, pp. 491–497 [CrossRef] [Google Scholar]
  • N. Alotibi and M. Alshammari, “Deep Learning-based Intrusion Detection: A Novel Approach for Identifying Brute-Force A [20] Panwar, S. S., Negi, P. S., Panwar, L. S., & Raiwani, Y. P. (2019). Implementation of machine learning algorithms on cicids-2017 dataset for intrusion detection using WEKA. International Journal of Recent Technology and Engineering, 8(3), pp. 2195–2207ttacks on FTP and SSH Protocol.” [Online]. Available: www.ijacsa.thesai.org [Google Scholar]
  • Panwar, S. S., Negi, P. S., Panwar, L. S., & Raiwani, Y. P. (2019). Implementation of machine learning algorithms on cicids-2017 dataset for intrusion detection using WEKA. International Journal of Recent Technology and Engineering, 8(3), pp. 2195–2207 [Google Scholar]
  • Hynek, K., Beneš, T., Čejka, T., & Kubátová, H. (2020). Refined detection of SSH brute-force attackers using machine learning. ICT Systems Security and Privacy Protection: 35th IFIP TC 11 International Conference, SEC 2020, Maribor, Slovenia, September 21-23, 2020, Proceedings 35, 49–63 [Google Scholar]
  • J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. J. Big Data 7, 104 (2020).” [CrossRef] [Google Scholar]
  • S. Kahara Wanjau, G. M. Wambugu, and G. Ndung’u Kamau, “SSH-Brute Force Attack Detection Model based on Deep Learning,” 2021. [Online]. Available: www.ijcat.com [Google Scholar]
  • M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and R. Zuech, “Machine learning for detecting brute force attacks at the network level,” in 2014 IEEE International Conference on Bioinformatics and Bioengineering, IEEE, 2014, pp. 379–385 [CrossRef] [Google Scholar]
  • D. Stiawan, M. Idris, R. F. Malik, S. Nurmaini, N. Alsharif, and R. Budiarto, “Investigating brute force attack patterns in IoT network,” Journal of Electrical and Computer Engineering, Vol. 2019, 2019 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.