Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00049 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20249700049 | |
Published online | 05 April 2024 |
- V. D. Lakshmi and C. S. Kumari, “Detection of Fake News using Machine Learning Models,” Int. J. Comput. Appl., vol. 183, no. 47, pp. 22–27, 2022, DOI: 10.5120/ijca2022921874. [Google Scholar]
- T. A. Wotaifi and B. N. Dhannoon, “Improving Prediction of Arabic Fake News Using Fuzzy Logic and Modified Random Forest Model,” Karbala Int. J. Mod. Sci., vol. 8, no. 3, pp. 477–485, 2022, DOI: 10.33640/2405-609X.3241. [CrossRef] [Google Scholar]
- R. Jehad and S. A. Yousif, “Fake News Classification Using Random Forest and Decision Tree (J48),” Al-Nahrain J. Sci., vol. 23, no. 4, pp. 49–55, 2020, DOI: 10.22401/anjs.23.4.09. [CrossRef] [Google Scholar]
- S. B. S. Mugdha, S. M. Ferdous, and A. Fahmin, “Evaluating Machine Learning Algorithms for Bengali Fake News Detection,” ICCIT 2020 - 23rd Int. Conf. Comput. Inf. Technol. Proc., 2020, DOI: 10.1109/ICCIT51783.2020.9392662. [Google Scholar]
- T. Blanke and T. Venturini, “A network view on reliability: using machine learning to understand how we assess news websites,” J. Comput. Soc. Sci., vol. 5, no. 1, pp. 69–88, 2022, DOI: 10.1007/s42001-021-00116-w. [CrossRef] [Google Scholar]
- Abedalla, A. Al-Sadi, and M. Abdullah, “A closer look at fake news detection: A deep learning perspective,” ACM Int. Conf. Proceeding Ser., no. October, pp. 24–28, 2019, DOI: 10.1145/3369114.3369149. [Google Scholar]
- C. M. M. Kotteti, X. Dong, N. Li, and L. Qian, “Fake news detection enhancement with data imputation,” Proc. - IEEE 16th Int. Conf. Dependable, Auton. Secur. Comput. IEEE 16th Int. Conf. Pervasive Intell. Comput. IEEE 4th Int. Conf. Big Data Intell. Comput. IEEE 3, pp. 193–199, 2018, DOI: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00042. [Google Scholar]
- M. Fayaz, A. Khan, M. Bilal, and S. U. Khan, “Machine learning for fake news classification with optimal feature selection,” Soft Comput., 26, no. 16, pp. 7763–7771, 2022, DOI: 10.1007/s00500-022-06773-x. [CrossRef] [Google Scholar]
- Y. Yu, L. Wang, H. Huang, and W. Yang, “An improved random forest algorithm,” J. Phys. Conf. Ser., 1646, no. 1, 2020, DOI: 10.1088/1742-6596/1646/1/012070. [Google Scholar]
- C. Whitehouse, T. Weyde, P. Madhyastha, and N. Komninos, “Evaluation of Fake News Detection with Knowledge-Enhanced Language Models,” Proc. Int. AAAI Conf. Web Soc. Media, Vol. 16, pp. 1425–1429, 2022, DOI: 10.1609/icwsm.v16i1.19400. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.