Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00050 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20249700050 | |
Published online | 05 April 2024 |
- D. Riquelme and M. A. Akhloufi, “Deep Learning for Lung Cancer Nodules Detection and Classification in CT Scans,” AI, vol. 1, no. 1, pp. 28–67, 2020, doi: 10.3390/ai1010003. [CrossRef] [Google Scholar]
- “Cancer Stat Facts: Lung and Bronchus Cancer, ” The Surveillance, Epidemiology, and End Results (SEER). https://seer.cancer.gov/statfacts/html/lungb.html (accessed May 11, 2023). [Google Scholar]
- A. Bhandary et al., “Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images,” Pattern Recognit. Lett., vol. 129, no. ii, pp. 271–278, 2020, doi: 10.1016/j.patrec.2019.11.013. [CrossRef] [Google Scholar]
- Y. Shieh and M. Bohnenkamp, “Low-Dose CT Scan for Lung Cancer Screening: Clinical and Coding Considerations,” Chest, vol. 152, no. 1, pp. 204–209, 2017, doi: 10.1016/j.chest.2017.03.019. [CrossRef] [PubMed] [Google Scholar]
- W. Ausawalaithong, A. Thirach, S. Marukatat, and T. Wilaiprasitporn, “Automatic Lung Cancer Prediction from Chest X-ray Images Using the Deep Learning Approach,” BMEiCON 2018 - 11th Biomed. Eng. Int. Conf., 2019, doi: 10.1109/BMEiCON.2018.8609997. [Google Scholar]
- and H. W. Keming Mao, Renjie Tang, Xinqi Wang, Weiyi Zhang, “Feature Representation Using Deep Autoencoder for Lung Nodule Image Classification,” Hindawi, vol. 2018, p. 12, 2018, doi: https://doi.org/10.1155/2018/3078374. [Google Scholar]
- I. Ghosal, S. S., Sarkar, I., & El Hallaoui, “Lung nodule classification using Convolutional Autoencoder and Clustering Augmented Learning Method ( CALM ),” HSDM@ WSDM, p. 8, 2020. [Google Scholar]
- R. Arulmurugan and H. Anandakumar, “Early detection of lung cancer using wavelet feature descriptor and feed forward back propagation neural networks classifier,” Lect. Notes Comput. Vis. Biomech., vol. 28, pp. 103–110, 2018, doi: 10.1007/978-3-319-71767-8_9. [CrossRef] [Google Scholar]
- D. Nurtiyasari, D. Rosadi, and Abdurakhman, “The application of Wavelet Recurrent Neural Network for lung cancer classification,” in 2017 3rd International Conference on Science and Technology - Computer (ICST), Jul. 2017, no. 1, pp. 127–130, doi: 10.1109/ICSTC.2017.8011865. [Google Scholar]
- K. P. Aarthy and U. S. Ragupathy, “Detection of Lung Nodule Using Multiscale Wavelets and Support Vector Machine,” Int. J. Soft Comput. Eng., no. 3, pp. 32–36, 2012. [Google Scholar]
- E. Matsuyama and D. Tsai, “Automated Classification of Lung Diseases in Computed Tomography Images Using a Wavelet Based Convolutional Neural Network,” J. Biomed. Sci. Eng., vol. 11, no. 10, pp. 263–274, 2018, doi: 10.4236/jbise.2018.1110022. [CrossRef] [Google Scholar]
- A. M. Sarhan, “A Novel Lung Cancer Detection Method Using Wavelet Decomposition and Convolutional Neural Network,” J. Biomed. Sci. Eng., vol. 13, no. 5, pp. 81–92, 2020, doi: 10.4236/jbise.2020.135008. [CrossRef] [Google Scholar]
- J. Amin et al., “Brain Tumor Detection by Using Stacked Autoencoders in Deep Learning,” J. Med. Syst., p. 12, 2019, doi: 10.1007/s10916-019-1483-2. [Google Scholar]
- F. Silva et al., “applied sciences Pre-Training Autoencoder for Lung Nodule Malignancy Assessment Using CT Images,” Appl. Sci., vol. 10, no. 21, p. 13, 2020, doi: 10.3390/app10217837. [Google Scholar]
- M. Astaraki, I. Toma-dasu, and Ö. Smedby, “Normal Appearance Autoencoder for Lung Cancer Detection and Segmentation Normal Appearance Autoencoder for Lung Cancer Detection and Segmentation,” Med. Image Comput. Comput. Assist. Interv. –MICCAI2019, p. 8, 2019, doi: 10.1007/978-3-030-32226-7_28. [Google Scholar]
- G. A. P. Singh and P. K. Gupta, “Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans,” Neural Comput. Appl., vol. 31, no. 10, pp. 6863–6877, 2019, doi: 10.1007/s00521-018-3518-x. [CrossRef] [Google Scholar]
- S. Potghan, R. Rajamenakshi, and A. Bhise, “Multi-Layer Perceptron Based Lung Tumor Classification,” Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no. Iceca, pp. 499–502, 2018, doi: 10.1109/ICECA.2018.8474864. [Google Scholar]
- “NIH Clinical Center provides one of the largest publicly available chest x-ray datasets to scientific community | National Institutes of Health (NIH).” https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community (accessed Nov. 10, 2023). [Google Scholar]
- E. Matsuyama, D. Tsai, and Y. Lee, “A Modified Undecimated Discrete Wavelet Transform Based Approach to Mammographic Image Denoising,” springer, vol. 26, pp. 748–758, 2013, doi: 10.1007/s10278-012-9555-6. [Google Scholar]
- K. Gopal, D. Arunita, D. Swarnajit, R. Jorge, and G. Sanjoy, “Histogram Equalization Variants as Optimization Problems: A Review,” Arch. Comput. Methods Eng., no. 0123456789, 2020, doi: 10.1007/s11831-020-09425-1. [Google Scholar]
- M. Mafi, H. Martin, M. Cabrerizo, J. Andrian, and A. Barreto, “A comprehensive survey on impulse and Gaussian denoising filters for digital images,” Signal Processing, vol. 157, pp. 236–260, 2019, doi: 10.1016/j.sigpro.2018.12.006. [CrossRef] [Google Scholar]
- Z. Q. X. Lin, “An Effective Gaussian Fitting Approach for Image Contrast Enhancement,” IEEE Access, vol. 7, pp. 31946–31958, 2019, doi: 10.1109/ACCESS.2019.2900717. [CrossRef] [Google Scholar]
- V. A. Bharadi and L. Padole, “Performance comparison of hybrid wavelet transform-I variants and contrast limited adaptive histogram equalization combination for image enhancement,” IFIP Int. Conf. Wirel. Opt. Commun. Networks, WOCN, 2017, doi: 10.1109/WOCN.2017.8065842. [Google Scholar]
- V. A. Bharadi and L. Padole, “Hybrid wavelet transform i and II combined with contrast limited adaptive histogram equalization for image enhancement,” IFIP Int. Conf. Wirel. Opt. Commun. Networks, WOCN, 2017, doi: 10.1109/WOCN.2017.8065860. [Google Scholar]
- S. M. Pizer et al., “Adaptive Histogram Equalization and Its Variations.,” Comput. vision, Graph. image Process., vol. 39, no. 3, pp. 355–368, 1987, doi: 10.1016/S0734-189X(87)80186-X. [CrossRef] [Google Scholar]
- D. P. Tian, “A review on image feature extraction and representation techniques,” Int. J. Multimed. Ubiquitous Eng., vol. 8, no. 4, pp. 385–395, 2013. [Google Scholar]
- A. Latif et al., “Content-based image retrieval and feature extraction: A comprehensive review,” Math. Probl. Eng., vol. 2019, 2019, doi: 10.1155/2019/9658350. [CrossRef] [Google Scholar]
- M. A. Al-Shabil, “Credit Card Fraud Detection Using Autoencoder Model in Unbalanced Datasets,” J. Adv. Math. Comput. Sci., vol. 33, no. 5, pp. 1–16, 2019, doi: 10.9734/JAMCS/2019/v33i530192. [CrossRef] [Google Scholar]
- G. M. Azehoun-Pazou, K. M. Assogba, and H. Adegbidi, “A novel approach of black skin lesion images segmentation based on MLP Neural Network,” 2016 Int. Conf Bio-Engineering Smart Technol. BioSMART 2016, 2017, doi: 10.1109/BIOSMART.2016.7835598. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.