Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00126 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/20249700126 | |
Published online | 05 April 2024 |
- Beven, K.J., Cloke, H.L., 2012, “Comment on ‘hyper resolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water’ by Eric, F. Wood et al.,” Water Resour. Res., 48, 1, 1–10. [CrossRef] [Google Scholar]
- Ehsan Khodadadi, S.K. Towfek, Hussein Alkattan. (2023). Brain Tumor Classification Using Convolutional Neural Network and Feature Extraction. Fusion: Practice and Applications, 13(2), 34–41. [CrossRef] [Google Scholar]
- Corzo, G., Solomatine, D., 2007, “Baseflow separation techniques for modular artificial neural network modelling in flow forecasting”, Hydrol. Sci. J., 52, 3, 491–507. [CrossRef] [Google Scholar]
- Al-Nuaimi, B.T., Al-Mahdawi, H.K., Albadran, Z., Alkattan, H., Abotaleb, M., & Elkenawy, E.S.M. (2023). Solving of the inverse boundary value problem for the heat conduction equation in two intervals of time. Algorithms, 16(1), 33. [CrossRef] [Google Scholar]
- Gursoy, O., Engin, S.N., 2019, “A wavelet neural network approach to predict daily river discharge using meteorological data”, Meas. Control (United Kingdom), 52, 5-6, 599–607. [CrossRef] [Google Scholar]
- Akbari, E., Mollajafari, M., Al-Khafaji, H.M.R., Alkattan, H., Abotaleb, M., Eslami, M., & Palani, S. (2022). Improved salp swarm optimization algorithm for damping controller design for multimachine power system. IEEE Access, 10, 82910–82922. [CrossRef] [Google Scholar]
- Jain, A., Srinivasulu, S., 2006, “Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques”, J. Hydrol., 317, 3-4, 291–306. [CrossRef] [Google Scholar]
- Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M., 2018, “Rainfall-Runoff modelling using Long-Short-Term-Memory (LSTM) networks”, 1–26. [Google Scholar]
- Al-Mahdawi, H.K., Albadran, Z., Alkattan, H., Abotaleb, M., Alakkari, K., & Ramadhan, A.J. (2023, December). Using the inverse Cauchy problem of the Laplace equation for wave propagation to implement a numerical regularization homotopy method. AIP Conference Proceedings (Vol. 2977, No. 1). AIP Publishing. [Google Scholar]
- Lindsay, G.W., 2021, “Convolutional neural networks as a model of the visual system: Past, present, and future”, J. Cogn. Neurosci., 33, 10, 2017–2031. [CrossRef] [PubMed] [Google Scholar]
- Liu, M., et al., 2020, “The applicability of lstm-knn model for real-time flood forecasting in different climate zones in China”, Water (Switzerland), 12, 2, 1–21. [Google Scholar]
- Parkes, B.L., Wetterhall, F., Pappenberger, F., He, Y., Malamud, B.D., Cloke, H.L., 2013, “Assessment of a 1-hour gridded precipitation dataset to drive a hydrological model: A case study of the summer 2007 floods in the upper severn, UK”, Hydrol. Res., 44, 1, 89–105. [CrossRef] [Google Scholar]
- Poornima, S., Pushpalatha, M., 2019, “Prediction of rainfall using intensified LSTM based recurrent Neural Network with Weighted Linear Units’, Atmosphere (Basel)., 10, 11. [Google Scholar]
- Sang, Y.F., 2013, “A review on the applications of wavelet transform in hydrology time series analysis”, Atmos. Res., 122, 8–15. [CrossRef] [Google Scholar]
- The Best Time to Visit Chelyabinsk, Russia for Weather, Safety, & Tourism, champion Traveler, https://trek.zone/en/russia/places/18580/chelyabinsk. [Google Scholar]
- Weather and Topography of Chelyabinsk (The weather year-round anywhere on earth), Weather Spark, https://weatherspark.com/y/106113/Average-Weather-in-Chelyabinsk-Russia-Year-Round. [Google Scholar]
- Wesemann, J., Herrnegger, M., Schulz, K., 2018, “Erratum to: Hydrological modelling in the anthroposphere: predicting local runoff in a heavily modified high-alpine catchment,” J. Mt. Sci., p. 1. [Google Scholar]
- Wong, K.W., Wong, P.M., Gedeon, T.D., Fung, C.C., 2003, “Rainfall prediction model using soft computing technique”, Soft Comput., 7, 6, 434–438. [CrossRef] [Google Scholar]
- Xiang, Z., Yan, J., Demir, I., 2020, “A Rainfall-Runoff Model With, L.S.TM-Based Sequence-to-Sequence Learning”, Water Resour. Res., 56, 1. [CrossRef] [Google Scholar]
- Zhang, B., Govindaraju, R.S., 2000, “Prediction of watershed runoff using Bayesian concepts and modular neural networks”, Water Resour. Res., 36, 3, 753–762. [CrossRef] [Google Scholar]
- Zolotokrylin, A.N., Vinogradova, V.V., Titkova, T.B., Cherenkova, E.A., Bokuchava, D.D., Sokolov, I.A., Vinogradov, A.V., Babina, E.D., 2018, “Impact of climate changes on population vital activities in Russia in the early 21stcentury”. IOP Conf Ser: Earth and Environ Sci, 107:012045. https://doi.org/10.1088/1755-1315/107/1/012045 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.