Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00143
Number of page(s) 9
DOI https://doi.org/10.1051/bioconf/20249700143
Published online 05 April 2024
  • M. R. Hestenes, and E. Stiefel, “Methods of conjugate gradients for solving linear systems” J. Res. Natl. Bur. Stand. (1934)., vol. 49, no. 6, p. 409, 1952. [CrossRef] [Google Scholar]
  • R. Fletcher, and C. M. Reeves, “Function minimization by conjugate gradients,” The computer journal, vol. 7, no. 2, pp. 149–154, 1964. [CrossRef] [Google Scholar]
  • H. I. Ahmed, E. T. Hamed, and H. T. Saeed. Chilmeran, “A Modified Bat Algorithm with Conjugate Gradient Method for global Optimization,” International Journal of Mathematicsan Mathematical Scinces, vol. 2020, 2020 [Google Scholar]
  • Basim A. Hassan M. Sadiq, (2022), A new formula on the conjugate gradient method for removing impulse noise images, Bulletin of the south Ural State University. Ser. Mathematical Modelling, Programming &Computer Software (Bulletin SUSUMMCS), 2022, vol. 15, no. 4, pp. 123–130. [Google Scholar]
  • H.I. Ahmed, R.Z. Al-Kawaz and A.Y. Al-Bayati, “Spectral three-term constrained conjugate gradient algorithm for function minimizations,” Hindawi J. Appl. Math., vol 2019. https://doi.org/10.1155/2019/6378368, 2019. [Google Scholar]
  • E.T. Hamed, H.I. Ahmed, H. Y. Najm, “Global Convergence of Conjugate Gradient Method inUnconstrained Optimization Problems,” International Conference of Mathematical Sciences (ICMS 2018) AIP. [Google Scholar]
  • P. Wolfe, “Convergence conditions for a scent methods II: some corrections”. SIAM Review, Vol.13, No. 2, 1971, pp.185–188. [CrossRef] [Google Scholar]
  • Ibrahim, M. A. H. Bin, Mamat, M. and June, L.W. (2014) “BCGF method: Anew search direction”, Sains Malayasiana, 43(10), pp. 1591–1597. [Google Scholar]
  • Najm, H. Y., & Ahmed, H. I. (2022, December). Improving Jellyfish Swarm Algorithm for Solving Unconstrained Optimization Problems. In 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA) (pp. 226–231). IEEE. [CrossRef] [Google Scholar]
  • Powell, M. J. D., (1976a), “Rstart Procedure For The conjugate Gradient Methods, Mathematical programming”, 12, 241–254. [Google Scholar]
  • H. Yabe, and M. Takano, “Global convergence properties of nonlinear conjugate gradient methods with modified secant condition,” Computational optimization and Applications, vol. 28, no.2, pp. 203–225, 2004. [CrossRef] [Google Scholar]
  • Andrei, N. (2020) Nonlinear conjugate gradient methods for unconstrained optimization, Springer Optimization and It’s a’pplications. [Google Scholar]
  • Andrei, N. (2008) ‘An Unconstrained Optimization Test Functions Collection’, Advanced Modelling and Optimization, 10(1), pp. 147–161 [Google Scholar]
  • E. D. Dolan, and J. J. Moré, “Benchmarking optimization software with performance profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–213, 2002 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.