Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00149 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/20249700149 | |
Published online | 05 April 2024 |
- M.-J. Jang, C.-L. Chen and Y.-C. Liu. Two-dimensional differential transform for partial differential equations. Appl. Math. Compute. 121 (2001). 261–270. [Google Scholar]
- E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear parabolic partial differential equations. Lecture Notes in Control and Inform. Sci. 176 (1992). 200–217. [Google Scholar]
- E. E. Holmes, M. A. Lewis and J. E. Banks. R.R. Veit, Partial differential equations in ecology: spatial interactions and population dynamics. Ecology. 75 (1994). 17–29. [CrossRef] [Google Scholar]
- S. Stockar, M. Canova and Y. Guezennec. G. Rizzoni. A Lumped-Parameter Modeling Methodology for One-Dimensional Hyperbolic Partial Differential Equations Describing Nonlinear Wave Propagation in Fluids. J. Dyn. Sys. Meas. Control. 137 (2015). 1–11. [CrossRef] [Google Scholar]
- S. A. Elwakil, S. K. El-Labany, M. A. Zahran and R. Sabry. Modied extended tanh- function method for solving nonlinear partial differential equations. Phys. Lett. 299 (2002). 179–188. [CrossRef] [Google Scholar]
- O. V. Vasilyev and C. Bowman. Second-Generation Wavelet Collocation Method for the Solution of Partial Differential Equations. J. Compute. Phys. 165 (2000). 660–693. [CrossRef] [Google Scholar]
- L. A. Zadeh. Fuzzy sets. Information and control. 8 (1965). 338–353. [CrossRef] [Google Scholar]
- J. J. Buckley and T. Feuring. Introduction to fuzzy partial differential equations. Fuzzy Sets and Systems. 105 (1999). 241–248. [CrossRef] [Google Scholar]
- T. Allahviranloo. Difference methods for fuzzy partial differential equations. Comput. Methods Appl. Math.. 2 (2002). 233–242. [CrossRef] [Google Scholar]
- A. Pownuk. Numerical solutions of fuzzy partial differential equations and its applications in computational mechanics. Stud. Fuzziness Soft Comput.. 142 (2004). 308–347. [CrossRef] [Google Scholar]
- B. Bede and S. G. Gal. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems. 151 (2005). 581–599. [CrossRef] [Google Scholar]
- N. Mikaeilvand and S. Khakrangin. Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl. 21 (2012). 307–312. [CrossRef] [Google Scholar]
- A. M. Bertone, R. M. Jafelice and L. C. De Barros. R.C. Bassanezi. On fuzzy solutions for partial differential equations. Fuzzy Sets and Systems. 219 (2013). 68–80. [CrossRef] [Google Scholar]
- A. J. Ali, Z. M. Hussain and M. S. Mechee. Snowflake Logarithmic Metrics for Face Recognition in the Zernike Domain. Global Journal of Pure and Applied Mathematics, 13(2017), 921–939. [Google Scholar]
- A. J. Ali and S. F. Abushilah. Distribution-free two-sample homogeneity test for circular data based on geodesic distance. International Journal of Nonlinear Analysis and Applications, 13 (2022), 2703–2711. [Google Scholar]
- H. C. Wu. The fuzzy Riemann integral and its numerical integration. Fuzzy Set Syst 110:1–25. 2000. [CrossRef] [Google Scholar]
- M. Friedman, M. Ma and A. Kandel. Numerical solutions of fuzzy differential and integral equations. Fuzzy Sets and Systems 106: 35–48. 1999. [CrossRef] [Google Scholar]
- M. B. Ahmadi, N. A. Kiani and N. Mikaeilv. Laplace transform formula on fuzzy nth- order derivative and its application in fuzzy ordinary differential equations. Soft Comput 18:2461–2469. 2014. [CrossRef] [Google Scholar]
- M. L. Puri and D. A. Ralescu. Fuzzy Random Variables. Journal of mathematical analysis and applications. 114: 409–422. 1986. [CrossRef] [Google Scholar]
- H. C. Wu. The improper fuzzy Riemann integral and its numerical integration. Information Sciences. 111: 109–137. 1998. [CrossRef] [Google Scholar]
- S. T. A. Alshibley, A. N. Albukhuttar and A. N. Alkiffai. Solving a circuit system using fuzzy Aboodh transform. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12.12 (2021): 3317–3323. [Google Scholar]
- S. T. A. Alshibley, A. N. Albukhuttar and A. N. Alkiffai. Using Fuzzy Aboodh Transform to Solve A System of First Order Fuzzy Linear Differential Equations. Journal of Physics: Conference Series. Vol. 2322. No. 1. IOP Publishing. 2022. [Google Scholar]
- A. N. Alkiffai, S. T. A. Alshibley and A. N. Albukhuttar. Fuzzy Aboodh transform for 2nd and 3rd-Order fuzzy differential equations. AIP Conference Proceedings. Vol. 2593. No. 1. AIP Publishing. 2023. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.