Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00156 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/20249700156 | |
Published online | 05 April 2024 |
- Brennan, P. & Davey-Smith, G. Identifying Novel Causes of Cancers to Enhance Cancer Prevention: New Strategies Are Needed. J. Natl. Cancer Inst. 114, 353–360 (2022). [CrossRef] [PubMed] [Google Scholar]
- Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. International Journal of Cancer vol. 118 3030–3044 at https://doi.org/10.1002/ijc.21731 (2006). [CrossRef] [PubMed] [Google Scholar]
- De Wever, O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 200, 429–47 (2003). [CrossRef] [PubMed] [Google Scholar]
- Montesano, R. & Hall, J. Environmental causes of human cancers. Eur. J. Cancer 37, 67–87 (2001). [CrossRef] [Google Scholar]
- Clapp, R. W., Jacobs, M. M. & Loechler, E. L. Environmental and occupational causes of cancer: New evidence 2005-2007. Rev. Environ. Health 23, 1–37 (2008). [CrossRef] [PubMed] [Google Scholar]
- Ames, B. N., Gold, L. S. & Willett, W. C. The causes and prevention of cancer. Proc. Natl. Acad. Sci. U. S. A. 92, 5258–5265 (1995). [CrossRef] [PubMed] [Google Scholar]
- Loessner, D., Paige Little, J., Pettet, G. J. & Hutmacher, D. W. A multiscale road map of cancer spheroids-incorporating experimental and mathematical modelling to understand cancer progression. J. Cell Sci. 126, 2761–2771 (2013). [Google Scholar]
- Tabassum, S., Rosli, N. B. & Binti Mazalan, M. S. A. Mathematical Modeling of Cancer Growth Process: A Review. J. Phys. Conf. Ser. 1366, (2019). [Google Scholar]
- Diaz-Cano, S. J. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int. J. Mol. Sci. 13, 1951–2011 (2012). [CrossRef] [Google Scholar]
- Warburg, O. On the Origin of Cancer Cells. Science (80-. ). 123, 309–314 (1956). [Google Scholar]
- Natali, F. & Rancati, G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front. Genet. 10, 1–10 (2019). [CrossRef] [Google Scholar]
- Aguadé-Gorgorió, G. & Solé, R. Adaptive dynamics of unstable cancer populations: The canonical equation. Evol. Appl. 11, 1283–1292 (2018). [CrossRef] [Google Scholar]
- Basu, A. K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 19, (2018). [Google Scholar]
- Baute, J. & Depicker, A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 43, 239–276 (2008). [CrossRef] [PubMed] [Google Scholar]
- Understandings, F. & Development, T. Weinberg-tumor progression. 62–70 (1996) doi:https://www.jstor.org/stable/24993349. [Google Scholar]
- Evans, E. J. & DeGregori, J. Cells with cancer-associated mutations overtake our tissues as we age. Aging and Cancer 2, 82–97 (2021). [CrossRef] [PubMed] [Google Scholar]
- Wodarz, D. & Komarova, N. L. Competition between genetically stable and unstable cells. Dyn. Cancer 57–80 (2014) doi: 10.1142/9789814566377_0006. [CrossRef] [Google Scholar]
- Hines, P. J. cycle regulationCell. Science (80-. ). 371, 1328.3-1328 (2021). [Google Scholar]
- Cohen, J. J. Apoptosis: mechanisms of life and death in the immune system. J. Allergy Clin. Immunol. 103, 548–54 (1999). [CrossRef] [Google Scholar]
- Menchón, S. A. & Condat, C. A. Macroscopic dynamics of cancer growth. European Physical Journal: Special Topics vol. 143 89–94 at https://doi.org/10.1140/epjst/e2007-00075-1 (2007). [CrossRef] [Google Scholar]
- Di Gregorio, A., Bowling, S. & Rodriguez, T. A. Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Dev. Cell 38, 621–34 (2016). [CrossRef] [Google Scholar]
- Lenz, L. S. et al. Cancer Cell Fitness Is Dynamic. Cancer Res. 81, 1040–1051 (2021). [CrossRef] [PubMed] [Google Scholar]
- Bowling, S., Lawlor, K. & Rodríguez, T. A. Cell competition: the winners and losers of fitness selection. Development 146, 1–12 (2019). [CrossRef] [Google Scholar]
- Komarova, N. L. & Wodarz, D. Evolutionary dynamics of mutator phenotypes in cancer: implications for chemotherapy. Cancer Res. 63, 6635–42 (2003). [Google Scholar]
- Song, R. & Acar, M. Stochastic modeling of aging cells reveals how damage accumulation, repair, and cell-division asymmetry affect clonal senescence and population fitness. BMC Bioinformatics 20, 1–14 (2019). [CrossRef] [PubMed] [Google Scholar]
- Raynes, Y. & Weinreich, D. M. Genomic clustering of fitness-affecting mutations favors the evolution of chromosomal instability. Evol. Appl. 12, 301–313 (2019). [CrossRef] [Google Scholar]
- Wodarz, D. & Komarova, N. L. Computational biology of cancer: Lecture notes and mathematical modeling. Computational Biology of Cancer: Lecture Notes and Mathematical Modeling (2005). doi: 10.1142/5642. [CrossRef] [Google Scholar]
- Hussain, K., Ismail, F. & Senu, N. Runge-kutta type methods for directly solving special fourth-order ordinary differential equations. Math. Probl. Eng. 2015, (2015). [Google Scholar]
- Barnes, B. & Fulford, G. R. Mathematical modelling with case studies: Using mapleTM and MATLAB®, third edition. Mathematical Modelling with Case Studies: Using Maple and MATLAB, Third Edition (2014). doi: 10.1201/b17896. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.