Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00157 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/20249700157 | |
Published online | 05 April 2024 |
- Adil, N., Dewangan, S., Sharma, K., 2019, “Efficient Classification and Regression Techniques to Predict Crop Yield”, International Journal of Scientific and Technology Research, 8, 11, 378–382. [Google Scholar]
- Bhatla, R., Dani, B., Tripathi, A., 2018, “Impact of Climate on Sugarcane Yield over Gorakhpur District U.P using Statistical Model”, Vayu Mandal, 44, 1. [Google Scholar]
- Ehsan Khodadadi, S.K. Towfek, Hussein Alkattan. (2023). Brain Tumor Classification Using Convolutional Neural Network and Feature Extraction. Fusion: Practice and Applications, 13(2), 34–41. [CrossRef] [Google Scholar]
- Everingham, Y., Sexton, J., Skocaj, D., Bamber G.I., 2016, “Accurate prediction of Sugarcane Yield Using a Random Forest Algorithm”, https://hal.archives-ouvertes.fr/hal-01532457. [Google Scholar]
- Fathima, K., Sowmya, Basker, S., Kulkarni, S., 2020, “Analysis of Crop Yield Prediction Using Data Mining Technique”. International Research Journal of Engineering and Technology, 7, 57708–7713. [Google Scholar]
- Jakaria, A.H.M., Hossain, M.M., Rahman, M.A., 2020, “Smart Weather Forecasting Using Machine Learning: A Case Study in Tennessee”. arXiv preprint 2008.10789. [Google Scholar]
- Josephine, B.M., Ramya, K.R., Rao, K.V.S.N.R., Kuchibhotla, S., Kishore, P.B.V., Rahamathulla, S. 2020. “Crop Yield Prediction Using Machine Learning”, International Journal of Scientific & Technology Research, 9, 2, 2102–2106. [Google Scholar]
- Kiran, D.B., Priyanka, J., Poojitha, K.S., Khan, A., 2020, “Crop Yield Prediction Using Regression”, International Research Journal of Engineering and Technology, 7, 5, 3896–3899. [Google Scholar]
- Akbari, E., Mollajafari, M., Al-Khafaji, H. M. R., Alkattan, H., Abotaleb, M., Eslami, M., & Palani, S. (2022). Improved salp swarm optimization algorithm for damping controller design for multimachine power system. IEEE Access, 10, 82910–82922. [CrossRef] [Google Scholar]
- Kumar, S., Singh, J., Singh, P.K., Pandey, D.K., 2018, “CoLK09204 (Ikshu-3) a new midlate maturing high yielding Sugarcane variety for Northwest Zone of subtropical India”, Indian Journal of Sugarcane Technology, 33, 01, 39–43. [Google Scholar]
- Kumar, M. N., 2018, Sugarcane Crop Yield Estimation Using K- Nearest Neighbors, Journal of Advanced Research in Dynamical & Control Systems, 10, 04, 199–207. [Google Scholar]
- Priya, P., Muthaiah, U., and Balamurugan, M., 2018, “Predicting yield of the Crop Using Machine Learning Algorithm”, International Journal of Engineering Sciences and Research Technology, 07, 04, 1–7. [Google Scholar]
- Sangeeta, Shruthi, G., 2020, “Design and Implementation of Crop Yield Prediction Model in Agriculture”, International Journal of Scientific and Technology Research, 08, 01, 544–549. [Google Scholar]
- Al-Mahdawi, H. K., Albadran, Z., Alkattan, H., Abotaleb, M., Alakkari, K., & Ramadhan, A. J. (2023, December). Using the inverse Cauchy problem of the Laplace equation for wave propagation to implement a numerical regularization homotopy method. AIP Conference Proceedings (Vol. 2977, No. 1). AIP Publishing. [Google Scholar]
- Shastry, A., Sanjay, H.A., and Bhanushree, E., 2017, “Prediction of Crop Yield Using Regression Techniques”, International Journal of Soft Computing, 12, 02, 96–102. [Google Scholar]
- Sridhara, S., Ramesh, N., Gopakkali, P., Das, B., Venkatappa, S.D., Sanjivaiah, S.H., Singh, K.M., Singh, P., Ansary, D.O.E., Mahmoud, E.A., Elansary, H.O., 2020, “Weather -Based Neural Network, Stepwise Linear and Sparse Regression Approach for Rabi Sorghum Yield Forecasting of Karnataka, India”, Agronomy, 10, 1645. [CrossRef] [Google Scholar]
- Surya, P., Aroquiaraj, I.L., 2018, “Crop Yield Prediction in agriculture Using Data Mining Predictive Analytic Techniques”, International Journal of Research and Analytical Reviews, 05, 04, 783–787. [Google Scholar]
- Al-Nuaimi, B. T., Al-Mahdawi, H. K., Albadran, Z., Alkattan, H., Abotaleb, M., & El-Kenawy, E.S.M. (2023). Solving of the inverse boundary value problem for the heat conduction equation in two intervals of time. Algorithms, 16(1), 33. [CrossRef] [Google Scholar]
- Veenadhari, S., Misra, B., Singh, C.D., 2014, “Machine Learning Approach for Forecasting Crop Yield Based on Climatic Parameters”, International Conference on Computer Communication and Informatics. 03, 05, 1–6. [Google Scholar]
- Vishwa, G., Venkatesh, J., Geetha, C., 2019, “Crop Variety Selection Method Using Machine Learning”. International Journal of Innovations in Engineering and Technology. 12, 04, 35–38. [Google Scholar]
- Wickramasinghe, L., Weliwatta, R., Ekanayake, P., Jayasinghe, J., 2021, “Modeling the Relationship between Rice Yield and Climate Variables Using Statistical and Machine Learning Techniques”, Journal of Mathematics. Vol.2021, Article ID 6646126, 9 pages, 2021. https://doi.org/10.1155/2021/6646126 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.