Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 5 | |
Section | Current Issues in Biotechnology, Microbiology, and Bioengineering | |
DOI | https://doi.org/10.1051/bioconf/202410002015 | |
Published online | 08 April 2024 |
- L. Zhang, Y. Wang, S. Lei, et al., Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against Verticillium wilt. BMC Microbiol 23, 8 (2023). https://doi.org/10.1186/s12866-022-02749-x [CrossRef] [PubMed] [Google Scholar]
- H. Liu, V. Prajapati, S. Prajapati, H. Bais, J. Lu, Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Front. Genet. 12, 724217 (2021). https://doi.org/10.3389/fgene.2021.724217 [CrossRef] [Google Scholar]
- A. Sharma, T. Satyanarayana, Comparative genomics of Bacillus species and its relevance in industrial microbiology. Genomics Insights 6, 25–36 (2013). [Google Scholar]
- A.M. Earl, R. Losick, R. Kolter, Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275 (2008). [CrossRef] [Google Scholar]
- J. Shao, S. Li, N. Zhang, X. Cui, X. Zhou, G. Zhang, et al., Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial. Cell Factories 14, 130 (2015). https://doi.org/10.1186/s12934-015-0323-4 [CrossRef] [Google Scholar]
- Y. Liu, L. Chen, N. Zhang, Z. Li, G. Zhang, Y. Xu, et al., Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 29, 324–330 (2016). https://doi.org/10.1094/mpmi-10-15-0239-r [CrossRef] [PubMed] [Google Scholar]
- S. Tan, Y. Gu, C. Yang, Y. Dong, X. Mei, Q. Shen, et al., Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biol. Fertility Soils 52, 341–351 (2016). https://doi.org/10.1007/s00374-015-1079-z [CrossRef] [Google Scholar]
- L. Wu, H.-J. Wu, J. Qiao, X. Gao, R. Borriss, Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front. Microbiol. 6, 1395 (2015). [Google Scholar]
- B. Wu, W. Changjun, X. Dihong, Z. Heng, Y. Huan, L. Jinping, et al., Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103, 1–12 (2016). https://doi.org/10.1016/j.apsoil.2016.03.002 [CrossRef] [Google Scholar]
- S. Srivastava, V. Bist, S. Srivastava, P.C. Singh, P.K. Trivedi, M.H. Asif, et al., Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front. Plant Sci. 7, 587 (2016). [Google Scholar]
- L.C. Ng, M. Sariah, O. Sariam, O. Radziah, M.A. Zainal Abidin, PGPM-induced defense-related enzymes in aerobic rice against rice leaf blast caused by Pyricularia oryzae. Eur. J. Plant Pathol. 145, 167–175 (2016). https://doi.org/10.1007/s10658-015-0826-1 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.