Open Access
Issue |
BIO Web Conf.
Volume 100, 2024
International Scientific Forum “Modern Trends in Sustainable Development of Biological Sciences” (IFBioScFU 2024)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 9 | |
Section | Fundamental and Applied Research in Genetics and Molecular Biology | |
DOI | https://doi.org/10.1051/bioconf/202410003010 | |
Published online | 08 April 2024 |
- J. Banerji, S. Rusconi, Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell, 27, 299–308 (1981). https://doi:10.1016/0092-8674(81)90413-x [CrossRef] [PubMed] [Google Scholar]
- L.A. Lettice, et al., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet., 12 (14), 1725–1735 (2003). https://doi:10.1093/hmg/ddg180 [CrossRef] [Google Scholar]
- W.A. Whyte, et al., Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell., 153, 307–319 (2013). https://doi.org/10.1016/j.cell.2013.03.035 [CrossRef] [Google Scholar]
- R.E. Thurman, et al., The accessible chromatin landscape of the human genome. Nature, 489, 75–82 (2012). https://doi.org/10.1038/nature11232 [CrossRef] [PubMed] [Google Scholar]
- W. Wu, S.E. Hill, W.J. Nathan, et al., Neuronal enhancers are hotspots for DNA singlestrand break repair. Nature, 593, 440–444 (2021). https://doi.org/10.1038/s41586-021-03468-5 [CrossRef] [PubMed] [Google Scholar]
- K.W. Caldecott, M.E. Ward, A. Nussenzweig, The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat. Genet., 54, 115–120 (2022). https://doi.org/10.1038/s41588-021-01001-y [CrossRef] [PubMed] [Google Scholar]
- A. Tubbs, A. Nussenzweig, Endogenous DNA damage as a source of genomic instability in cancer. Cell, 168 (4), 644–656 (2017). https://doi.org/10.1016/j.cell.2017.01.002 [CrossRef] [PubMed] [Google Scholar]
- U. Hardeland, T. Lettieri, et al., Thymine DNA glycosylase. Prog. Nucl. Acid. Res. Mol. Biol., 68, 235–253 (2001). https://doi.org/10.1016/s0079-6603(01)68103-0 [CrossRef] [Google Scholar]
- A. Maiti, M.T. Morgan, A.C. Drohat, Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. The Journal of Bio. Chem., 284 (52), 36680–36688 (2009). https://doi.org/10.1074/jbc.M109.062356 [Google Scholar]
- D. Cortázar, C. Kunz, J. Selfridge, T. Lettieri, P. Schär, Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 470 (7334), 419–423 (2011). https://doi.org/10.1038/nature09672 [CrossRef] [PubMed] [Google Scholar]
- L. Shen, C.X. Song, C. He, Y. Zhang. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem., 83, 585–614 (2014). https://doi.org/10.1146/annurev-biochem-060713-035513 [CrossRef] [PubMed] [Google Scholar]
- X. Wu, Y. Zhang. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat.Rev.Gen., 18, 517–534 (2017). https://doi.org/10.1038/nrg.2017.33 [CrossRef] [PubMed] [Google Scholar]
- I. Talhaoui, S. Couve, L. Gros, A.A. Ishchenko, B. Matkarimov, M.K. Saparbaev. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands. NAR, 42(10)2, 6300–6313 (2014). https://doi.org/10.1093/nar/gku246 [CrossRef] [PubMed] [Google Scholar]
- D. Wang, W. Wu, E. Callen, A. Nussenzweig, et al. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science (New York, N.Y.), 378(6623), 983–989 (2022). https://doi.org/10.1126/science.add9838 [CrossRef] [PubMed] [Google Scholar]
- M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976). https://doi:10.1006/abio.1976.9999 [CrossRef] [Google Scholar]
- B.J. Bernard, N. Nigam, K. Burkitt, V. Saloura. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin. Epigen., 13 (1), 45 (2021). https://doi.org/10.1186/s13148-021-01021-9 [CrossRef] [PubMed] [Google Scholar]
- C.P. D’Incal, K.E. Van Rossem, K. De Man, et al., Chromatin remodeler activitydependent neuroprotective protein (ADNP) contributes to syndromic autism. Clin Epigenet., 15, 45 (2023). https://doi.org/10.1186/s13148-023-01450-8 [CrossRef] [Google Scholar]
- H.T. Helgadottir, M. Eriksson. Somatic mutation that affects transcription factor binding upstream of CD55 in the temporal cortex of a late-onset Alzheimer disease patient. Hum. Mol. Genet., 28 (16), 2675–2685 (2019). https://doi.org/10.1093/hmg/ddz085 [CrossRef] [PubMed] [Google Scholar]
- P.S. Hou, C.Y. Chuang, C. F. Kao, S. C. L. Chien, H. C. Kuo. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. NAR, 41(16), 7753–7770 (2013). https://doi.org/10.1093/nar/gkt567 [CrossRef] [PubMed] [Google Scholar]
- K. Hori, K. Shimaoka, M. Hoshino. AUTS2 gene: keys to understanding the pathogenesis of neurodevelopmental disorders. Cells, 11 (1), 1–12 (2021). [CrossRef] [PubMed] [Google Scholar]
- S.M. Kerins, R. Collins, T.V. McCarthy. Characterization of an endonuclease IV 3’-5’ exonuclease activity. Journal of Bio. Chem., 278 (5), 3048–3054 (2003). ISSN 0021-9258 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.