Open Access
Issue
BIO Web Conf.
Volume 108, 2024
International Scientific and Practical Conference “From Modernization to Rapid Development: Ensuring Competitiveness and Scientific Leadership of the Agro-Industrial Complex” (IDSISA 2024)
Article Number 10004
Number of page(s) 15
Section Biotechnology in Crop Production
DOI https://doi.org/10.1051/bioconf/202410810004
Published online 15 May 2024
  • K.P. Williams, J.E. Scott, Enzyme assay design for high-throughput screening, Methods Mol Biol, 565, 107-26 (2009) [CrossRef] [PubMed] [Google Scholar]
  • J.D. Schrag, Y.G. Li, S. Wu, M. Cygler, Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum, Nature. Jun 27, 351(6329), 761-4 (1991) [CrossRef] [PubMed] [Google Scholar]
  • M.E. Lowe, The catalytic site residues and interfacial binding of human pancreatic lipase, J. Biol. Chem., 267(24),17069–17073 (1992) [Google Scholar]
  • A. Rauwerdink, R.J. Kazlauskas, How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/βHydrolase Fold Enzymes, ACS Catalysis, 5(10), 6153–6176 (2015) [CrossRef] [PubMed] [Google Scholar]
  • P. Fojan, P.H. Jonson, M.T. Petersen, S.B. Petersen, What distinguishes an esterase from a lipase: a novel structural approach, Biochimie, 82(11), 1033–1041 (2000) [CrossRef] [PubMed] [Google Scholar]
  • S.E. Helal, H.M. Abdelhady, K.A. Abou-Taleb, M. G. Hassan, M.M. Amer, Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. J. Gen. Eng. & Biotech., 19(1),1 (2021) [Google Scholar]
  • F.I. Khan, D. Lan, R. Durrani, W. Huan, Z. Zhao, Y. Wang, The lid domain in lipases: structural and functional determinant of enzymatic properties, Front. in Bioeng. Biotech., 5, 16 (2017) [Google Scholar]
  • S. Brocca, F. Secundo, M. Ossola, L. Alberghina, G. Carrea, M. Lotti, Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes, Protein Sci. 12, 2312–2319 (2003) [CrossRef] [PubMed] [Google Scholar]
  • H. Chahinian, L. Sarda, Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases, Protein and peptide letters, 16(10), 1149–1161 (2009) [CrossRef] [PubMed] [Google Scholar]
  • J. López-Fernández, M.D. Benaiges, F. Valero, Rhizopus oryzae lipase, a promising industrial enzyme: biochemical characteristics, production and biocatalytic applications, Catalysts, 10(11), 1277 (2020) [CrossRef] [Google Scholar]
  • K. Faber, Biocatalytic Applications, Biotransformations in Organic Chemistry, Springer (2018) [CrossRef] [Google Scholar]
  • H. Xia, W. Zhang, Z. Yang, Z. Dai, Y. Yang. Spectrophotometric determination of pNitrophenol under ENP interference, J Anal Methods Chem, Jan, 6682722 (2021) [Google Scholar]
  • S. Brocca, F. Secundo, M. Ossola, L. Alberghina, G. Carrea, M. Lotti, Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes, Protein Sci, 12, 2312–2319 (2003) [CrossRef] [PubMed] [Google Scholar]
  • S. Seth, D. Chakravorty, V.K. Dubey, S. Patra, An insight into plant lipase research – challenges encountered, Protein Expr. Purif., 95, 13-21 (2014) [CrossRef] [Google Scholar]
  • A. Khalid, A. Hameed, M.F. Tahir, Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality, Front Nutr., 24(10), 1053196 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.