Open Access
Issue |
BIO Web Conf.
Volume 108, 2024
International Scientific and Practical Conference “From Modernization to Rapid Development: Ensuring Competitiveness and Scientific Leadership of the Agro-Industrial Complex” (IDSISA 2024)
|
|
---|---|---|
Article Number | 23001 | |
Number of page(s) | 7 | |
Section | Current Problems of Veterinary Medicine and Microbiology | |
DOI | https://doi.org/10.1051/bioconf/202410823001 | |
Published online | 15 May 2024 |
- G.V. Kalinkina*, A.V. Dubrovin, N.A. Kuptsova, A.A. Datsyshin, BIO Web of Conferences, 36, 06021 (2021). DOI: 10.1051/bioconf/20213606021. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Smart Farms: how artificial intelligence is changing agriculture. [Electronic resource]/ - Access mode: https://www.rbc.ru/technology_and_media/14/ [Google Scholar]
- 06/2023/64802. [Google Scholar]
- A.N. Ruchai, Bulletin of SUrSU. Series: Computational mathematics and Computer Science, 12(1), 5-27 (2023). DOI: 10.14529/cmse 230101. [Google Scholar]
- V.V. Gorbunov, Occupational medicine and industrial ecology, 2, 41-46 (2009). [Google Scholar]
- G.V. Kalinkina, A.V. Ustyantseva, Yu.A. Orlova, O.N. Makhmutova, Horse breeding and equestrian sport, 3, 11-14 (2023). DOI: 10.25727/HS.2023.3.60760 [Google Scholar]
- G.V. Kalinkina, A.V. Dubrovin, N.V. Abramova, Horse breeding and equestrian sports 1, 4-8 (2020). DOI: 10.25727/HS.2020.1.54431. [Google Scholar]
- S. Kuhnke, K. Bär, P. Bosch, et al. Journal of Equine Veterinary Science, 78, 53-59 (2019). [CrossRef] [PubMed] [Google Scholar]
- F. Goyache, J. José del Coz, J.R. Quevedo, S. López, Animal Science, 73(1), 49-60 (2011). DOI:10.1017/S1357729800058045 [Google Scholar]
- Sh. Li, L. Fu, Yu Sun, Ye Mu, L. Chen, Ji Li, He Gong, Journal.pone PLoS One, 29(16(11)), (2021) DOI: 10.1371/.0260510/ [Google Scholar]
- Yu.A. Ivanov, A.R. Zarikeev, Technique and technology in animal husbandry, 4(44), 6-8 (2008). [Google Scholar]
- E.M. Parn, V.B. Fileikin, V.A. Podobaev, N.V. Khorolskaya, Statistical model of a horse according to the “Horse” program, Physiological foundations of increasing productivity of farm animals: Abstracts.March 3, 1995 (Divovo, 1995) 107-108. [Google Scholar]
- Yu.G. Lyubimova, S.A. Orlovsky, D.E. Podobaeva, The study of correlations between the articles of the exterior and the structures of horse breeds: new mathematical methods, software tools, Problems of breeding work and environmentally friendly technologies in horse breeding: collection of scientific research (Divovo, 1994) 244-265. [Google Scholar]
- L.L. Vikulova, Identification and analysis of qualitative dependencies between the signs of the exterior and the performance of thoroughbred horses: Abstract. diss. ... candidate of Agricultural Sciences: 02/06/2011, Vikulova Larisa Leonidovna; Research Institute of Horse Breeding (Divovo, 2000) 19. [Google Scholar]
- A.N. Pobedinsky, The exterior of horses of the Russian riding breed and its connection with athletic performance: Abstract. diss. ... Candidate of Agricultural Sciences: 02/06/04/ Pobedinsky Alexey Nikolaevich; Moscow Agricultural Academy named after K.A. Timiryazev (M., 2001) 11. [Google Scholar]
- C. Cintas, С. Delrieux, et al. Journal of Computer Science & Technology, 19(1), 81-90 (2019). [Google Scholar]
- Easy keras facial keypoint detection [Electronic resource]. Access mode: https://www.kaggle.com/code/liudmyla/easy-keras-facial-keypoint-detection/notebook. [Google Scholar]
- Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose [Electronic resource]. Access mode:https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch. [Google Scholar]
- G. Oliva, V. Pinchi, et al. Healthcare, 10, 9 (2022). [Google Scholar]
- Y. Yeh, C. Weng, et al. Scientific Reports, 11, 7618 (2021). [CrossRef] [PubMed] [Google Scholar]
- S. Bas, Automatic landmark identification in digital images of Drosophila wings for improved morphometric analysis: Textbook (Uppsala: Uppsala Universitet, 2019) 72. [Google Scholar]
- V. Le, M. Beurton-Aimar, et al. Ecological Informatics, Elsevier, 60, 10.1016 (2020). [Google Scholar]
- P. Sayak, Keypoint Detection with Transfer Learning, 05, 02 (2021). Access mode:https://keras.io/examples/vision/keypoint_detection/. [Google Scholar]
- P. Sayak, Keypoint Detection with Transfer Learning, 05, 02 (2021). Access mode: https://keras.io/examples/vision/keypoint_detection//. [Google Scholar]
- V. Le, M. Beurton-Aimar, et al. Ecological Informatics, Elsevier, 60, 10.1016 (2020). [Google Scholar]
- Y. Chen, Z. Wang, et al. Cascaded Pyramid Network for Multi-Person Pose Estimation [Electronic resource]. https://arxiv.org/pdf/1711.07319.pdf [Google Scholar]
- V. Bazarevsky, I. Grishchenko, et al. BlazePose: On-device Real-time Body Pose tracking [Electronic resource]. https://arxiv.org/pdf/2006.10204.pdf [Google Scholar]
- N. Samet, E. Akbas, HPRNet: Hierarchical Point Regression for Whole – Body Human Pose Estimation [Electronic resource]. https://arxiv.org/pdf/2106.04269.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.