Open Access
Issue |
BIO Web Conf.
Volume 109, 2024
Conference on Water, Agriculture, Environment and Energy (WA2EN2023)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/202410901024 | |
Published online | 20 May 2024 |
- W. House and C. Street, ‘Industrial Innovation: Pathways to deep decarbonisation of Industry.Part 2: Scenario analysis and pathways todeep decarbonisation’, (2019). [Google Scholar]
- ‘IEA – International Energy Agency’. Accessed: (Mar. 21, 2024). [Online]. Available: https://www.iea.org/ [Google Scholar]
- N. Sharma, P. Sharma, D. Irwin, and P. Shenoy, ‘Predicting solar generation from weather forecasts using machine learning’, in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), (2011), pp. 528–533. doi: 10.1109/SmartGridComm.2011.6102379. [Google Scholar]
- M. G. De Giorgi, P. M. Congedo, and M. Malvoni, ‘Photovoltaic power forecasting using statistical methods: impact of weather data’, IET Science, Measurement & Technology, vol. 8, no. 3, pp. 90–97, (2014), doi: 10.1049/iet-smt.2013.0135. [CrossRef] [Google Scholar]
- C. Scott, M. Ahsan, and A. Albarbar, ‘Machine learning for forecasting a photovoltaic (PV) generation system’, Energy, vol. 278, p. 127807, Sep. (2023), doi: 10.1016/j.energy.2023.127807. [CrossRef] [Google Scholar]
- D. Markovics and M. J. Mayer, ‘Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction’, Renewable and Sustainable Energy Reviews, vol. 161, p. 112364, Jun. (2022), doi: 10.1016/j.rser.2022.112364. [CrossRef] [Google Scholar]
- L. Cabezón, L. G. B. Ruiz, D. Criado-Ramón, E. J. Gago, and M. C. Pegalajar, ‘Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study’, Energies, vol. 15, no. 22, Art. no. 22, Jan. (2022), doi: 10.3390/en15228732. [Google Scholar]
- A. Mystakidis et al., ‘Energy generation forecasting: elevating performance with machine and deep learning’, Computing, vol. 105, no. 8, pp. 1623–1645, Aug. (2023), doi: 10.1007/s00607-023-01164-y. [CrossRef] [Google Scholar]
- E. Sarmas, E. Spiliotis, E. Stamatopoulos, V. Marinakis, and H. Doukas, ‘Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models’, Renewable Energy, vol. 216, p. 118997, Nov. 2023, doi: 10.1016/j.renene.(2023).118997. [CrossRef] [Google Scholar]
- S. mahdi Miraftabzadeh, M. Longo, and F. Foiadelli, ‘A-Day-Ahead Photovoltaic Power Prediction Based on Long Short Term Memory Algorithm’, in (2020) International Conference on Smart Energy Systems and Technologies (SEST), Sep. 2020, pp. 1–6. doi: 10.1109/SEST48500.2020.9203481. [Google Scholar]
- M. AlShafeey and C. Csáki, ‘Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods’, Energy Reports, vol. 7, pp. 7601–7614, Nov. 2021, doi: 10.1016/j.egyr.(2021).10.125. [CrossRef] [Google Scholar]
- W. Van Deventer et al., ‘Short-term PV power forecasting using hybrid GASVM technique’, Renewable Energy, vol. 140, pp. 367–379, Sep. (2019), doi: 10.1016/j.renene.2019.02.087. [CrossRef] [Google Scholar]
- S. Cantillo-Luna, R. Moreno-Chuquen, D. Celeita, and G. Anders, ‘Deep and Machine Learning Models to Forecast Photovoltaic Power Generation’, Energies, vol. 16, no. 10, Art. no. 10, Jan. (2023), doi: 10.3390/en16104097. [Google Scholar]
- P. Gupta and R. Singh, ‘PV power forecasting based on data-driven models: a review’, International Journal of Sustainable Engineering, vol. 14, no. 6, pp. 1733–1755, Nov. (2021), doi: 10.1080/19397038.2021.1986590. [CrossRef] [Google Scholar]
- H. Aljaghoub, F. Abumadi, M. N. AlMallahi, K. Obaideen, and A. H. Alami, ‘Solar PV cleaning techniques contribute to Sustainable Development Goals (SDGs) using Multi-criteria decision-making (MCDM): Assessment and review’, International Journal of Thermofluids, vol. 16, p. 100233, (2022). [CrossRef] [Google Scholar]
- T.-T.-H. Phan, ‘Machine Learning for Univariate Time Series Imputation’, in (2020) International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Ha Noi, Vietnam: IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/MAPR49794.2020.9237768. [Google Scholar]
- S. M. Mostafa, ‘Missing data imputation by the aid of features similarities’, International Journal of Big Data Management, vol. 1, p. 81, Jan. 2020, doi: 10.1504/IJBDM.(2020).106883. [CrossRef] [Google Scholar]
- M. BÜYÜKKEÇECİ and M. Okur, ‘A Comprehensive Review of Feature Selection and Feature Selection Stability in Machine Learning’, GAZI UNIVERSITY JOURNAL OF SCIENCE, vol. 36, Sep. (2022), doi: 10.35378/gujs.993763. [Google Scholar]
- L. Breiman, ‘Random Forests’, Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. (2001), doi: https://doi.org/10.1023/A:1010933404324. [Google Scholar]
- G. Surribas Sayago, J. D. Fernández-Rodríguez, and E. Dominguez, ‘Photovoltaic Energy Prediction Using Machine Learning Techniques’, in Advances in Computational Intelligence, I. Rojas, G. Joya, and A. Catala, Eds., Cham: Springer Nature Switzerland, (2023), pp. 577–587. doi: 10.1007/978-3-031-43085-5_46. [Google Scholar]
- A. V. Dorogush, V. Ershov, and A. Gulin, ‘CatBoost: gradient boosting with categorical features support’, CoRR, vol. abs/1810.11363, (2018)(, doi: http://arxiv.org/abs/1810.11363. [Google Scholar]
- G. Ke et al., ‘LightGBM: A Highly Efficient Gradient Boosting Decision Tree’, in Neural Information Processing Systems,(2017). [Google Scholar]
- C. J. Willmott and K. Matsuura, ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Climate Research, vol. 30, no. 1, pp. 79–82, Dec. (2005), doi: 10.3354/cr030079. [CrossRef] [Google Scholar]
- T. Chai and R. R. Draxler, ‘Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature’, Geoscientific Model Development, vol. 7, no. 3, pp. 1247–1250, Jun. (2014), doi: 10.5194/gmd-7-1247-2014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.