Open Access
Issue
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
Article Number 01008
Number of page(s) 5
Section Technological Advances in the Horticulture Sector
DOI https://doi.org/10.1051/bioconf/202411001008
Published online 24 May 2024
  • Z. Iqbal, M. S. Iqbal, A. Hashem, E. F. Abd_Allah, & M. I. Ansari. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front. Plant Sci. 12, 631810 (2021) [CrossRef] [Google Scholar]
  • P. Kinnunen, J. H. Guillaume, M. Taka, P. D’odorico, S. Siebert, M. J. Puma, ... & M. Kummu. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food. 4, 229–237 (2020) [CrossRef] [Google Scholar]
  • A. Das, S. Saha, J. Layek, S. Babu, R. Saxena, & G. I. Ramkrushna. Agricultural Technologies. In Trajectory of 75 years of Indian Agriculture after Independence, 57–78 (Singapore: Springer Nature Singapore 2023) [Google Scholar]
  • J. Heitkötter & B. Marschner. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production. Geoderma 245, 56–64 (2015) [Google Scholar]
  • T. Allohverdi, A. K. Mohanty, P. Roy, & M. Misra. A review on current status of biochar uses in agriculture. Molecules 26 18, 5584 (2021) [CrossRef] [PubMed] [Google Scholar]
  • S. Noreen, & K. A. Abd-Elsalam. Biochar-based nanocomposites: A sustainable tool in wastewater bioremediation. In Aquananotechnology 185–200. Elsevier (2021) [Google Scholar]
  • D. Pandey, A. Daverey, & K. Arunachalam. Biochar: Production, properties and emerging role as a support for enzyme immobilization. Journal of Clean Prod. 255, 120267 (2020) [CrossRef] [Google Scholar]
  • N. Chausali, J. Saxena & R. Prasad. Nanobiochar and biochar based nanocomposites: Advances and applications. J. Agric and Food Res. 5, 100191 (2021) [Google Scholar]
  • N. Borchard, J. Siemens, B. Ladd, A. Möller & W. Amelung. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 144, 184–194 (2014) [CrossRef] [Google Scholar]
  • M. A. Rondon, J. Lehmann, J. Ramírez & M. Hurtado. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils. 43, 699–708 (2007) [CrossRef] [Google Scholar]
  • O. Y. Yu, B. Raichle & S. Sink. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ Eng. 4, 1–9 (2013) [CrossRef] [Google Scholar]
  • Ł. Gluba, A. Rafalska-Przysucha, K. Szewczak, M. Łukowski, R. Szlązak, J. Vitková & B. Usowicz. Effect of fine size-fractionated sunflower husk biochar on water retention properties of arable sandy soil. Mater. 146, 1335 (2021) [CrossRef] [Google Scholar]
  • P. A. Agam, S. G. Tale & S. S. Thakare. Economics of wheat production. Int. J. Agric. Econ. 8, 1–7 (2017) [Google Scholar]
  • S. Ramadas, T. K. Kumar & G. P. Singh. Wheat production in India: Trends and prospects. In Recent advances in grain crops research. (Intech Open, London 2019) [Google Scholar]
  • S. Bhat, C. Nandini & V. Tippeswamy. Significance of small millets in nutrition and health-A review. AJDFR. 371, 35–40 (2018) [Google Scholar]
  • S. Nithiyanantham, P. Kalaiselvi, M. F. Mahomoodally, G. Zengin, A. Abirami & G. Srinivasan. Nutritional and functional roles of millets—A review. J. Food biochem. 437, e12859 (2019) [Google Scholar]
  • A. Gull, R. Jan, G. A. Nayik, K. Prasad & P. Kumar Significance of finger millet in nutrition, health and value added products: a review. Magnesium (mg) 130, 120 (2014) [Google Scholar]
  • S. M. Gupta, S. Arora, N. Mirza, A. Pande, C. Lata, S. Puranik & A. Kumar. Finger millet: a “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front. Plant Sci. 8, 232421 (2017) [Google Scholar]
  • K. N. Ganapathy. Improvement in finger millet: status and future prospects. In Millets and sorghum: Biology and genetic improvement, 87–111 (John Wiley & Sons, 2017) [CrossRef] [Google Scholar]
  • D. K. Tripathi, P. Rai, G. Guerriero, S. Sharma, F. J. Corpas & V. P. Singh. Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid. J. Exp. Bot. 7212, 4457–4471 (2021) [CrossRef] [PubMed] [Google Scholar]
  • K. Xu, Y. Guo, C. Xing, R. Fu, B. Zou, R. Liu & M. Cai. Graphitic carbon nitride nanosheets mitigate cadmium toxicity in Glycine max L. by promoting cadmium retention in root and improving photosynthetic performance. J. Environ. Sci. 139, 543–555 (2024) [CrossRef] [Google Scholar]
  • Y. Hao, R. Lv, C. Ma, M. Adeel, Z. Zhao, Y. Rao & Y. Rui. Graphitic carbon nitride (gC 3 N 4) alleviates cadmium-induced phytotoxicity to rice (Oryza sativa L.). ESPR. 28, 21276–21284 (2021) [Google Scholar]
  • C. Ma, Y. Hao, J. Zhao, N. Zuverza-Mena, A. G. Meselhy, O. P. Dhankher & B. Xing. Graphitic carbon nitride (C3N4) reduces cadmium and arsenic phytotoxicity and accumulation in rice (Oryza sativa L.). Nanomater. 114, 839 (2021) [CrossRef] [Google Scholar]
  • D. R. Hoagland & D. I. Arnon (1950). The water-culture method for growing plants without soil. Circular. Calif. Agric. Exp. Stn. 347 (1950) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.