Open Access
Issue
BIO Web Conf.
Volume 110, 2024
2nd International Conference on Recent Advances in Horticulture Research (ICRAHOR 2024)
Article Number 01009
Number of page(s) 16
Section Technological Advances in the Horticulture Sector
DOI https://doi.org/10.1051/bioconf/202411001009
Published online 24 May 2024
  • M. Safna, K.V. Naik, V.S. Desai, M. S. Karmarkar, B.D. Shinde, and P. P. Raut. Evaluation of the efficacy of some insecticides against fruit borer, Helicoverpa armigera (Hubner) infesting tomato. Int. J. Chem. Stud, 6(2), 1158–1163 (2018). [Google Scholar]
  • D.L. Madhavi, and D.K. Salunkhe. Tomato. In Handbook of Vegetable Science and Technology (pp. 189–220). CRC Press (1998). [Google Scholar]
  • A. Raiola, M.M. Rigano, R. Calafiore, L. Frusciante, and A. Barone. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of Inflammation (2014). [Google Scholar]
  • S.S. Abbas, M.F. Shahzad, J. Iqbal, A. Ullah, A. Batool, M. Nadeem, ... and M.K. Hafeez-ur-Rehman. Trichogramma chilonis as parasitoid: An eco-friendly approach against tomato fruit borer, Helicoverpa armigera. J. Agric. Sci, 12(2), 167 (2020). [Google Scholar]
  • G.P. Fitt, and S.C. Cotter. The Helicoverpa problem in Australia: biology and management. Heliothis/Helicoverpa Management, CRC Press, pp 57–74 (2005). [Google Scholar]
  • K.P. Herald, and A.R. Tayde. Biology and morphology of tomato fruit borer, Helicoverpa armigera (Hubner) under Allahabad conditions. J. Entom. Zool. Studies 6(4), 1734–1737 (2018). [Google Scholar]
  • R.N.C. Guedes, and H.A.A. Siqueira. The tomato borer Tuta absoluta: insecticide resistance and control failure. CABI Reviews, 1–7 (2012). [CrossRef] [Google Scholar]
  • T.I. Ofuya, A.I. Okunlola, and G.N. Mbata. A review of insect pest management in vegetable crop production in Nigeria. Insects, 14(2), 111 (2023). [CrossRef] [PubMed] [Google Scholar]
  • S. Singh, S. Watts, I. Kaur, I. Rodriguez, J. Ayala, D. Rodriguez, ... and R. Kariyat. Sex and stress modulate pupal defense response in tobacco hornworm. Curr. Zool. 69(5), 592–599 (2023). [CrossRef] [PubMed] [Google Scholar]
  • N. Volesky, and M. Murray. High Tunnel Pest Management-Caterpillars. All Current Publications (2021). [Google Scholar]
  • D. Sharma, A. Maqbool, V.V.S. Jamwal, K. Srivastava, and A. Sharma. Seasonal dynamics and management of whitefly (Bemesia tabaci Genn.) in tomato (Solanum esculentum Mill.). Braz. Arch. Biol. Technol. 60 (2017). [CrossRef] [Google Scholar]
  • I.M. Fortes, R. Fernández-Muñoz, and E. Moriones. Host plant resistance to Bemisia tabaci to control damage caused in tomato plants by the emerging crinivirus tomato chlorosis virus. Front. Plant Sci. 11, 585510 (2020). [CrossRef] [Google Scholar]
  • Food and Agriculture Organization of the United Nations, The state of food insecurity in the World: The multiple dimensions of food security. Food and Agriculture Organization, Rome, Italy, (2013). [Google Scholar]
  • International Food Policy Research Institute, Global food policy report: 2016, International Food Policy Research Institute, Washington, D.C., (2016). [Google Scholar]
  • E. Stokstad. Devastating banana disease may have reached Latin America, could drive up global prices. Science 365, 207–208 (2019). [CrossRef] [PubMed] [Google Scholar]
  • P.M.A. Bourke. Emergence of potato blight, 1943-46. Nature 203, 805–808 (1964). [CrossRef] [Google Scholar]
  • S.Y. Padmanabhan. The Great Bengal famine. Annu. Rev. Phytopathol. 11, 11–24 (1973). [CrossRef] [Google Scholar]
  • J. Avelino, M., S. Georgiou et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015). https://doi.org/10.1007/s12571-015-0446-9 [CrossRef] [Google Scholar]
  • T.M. Perring, D. Battaglia, L.L. Walling, I. Toma, and P. Fanti. Aphids: biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato (pp. 15–48). Academic Press (2018). [CrossRef] [Google Scholar]
  • W. Wakil, G.E. Brust, and T. Perring (Eds.). Sustainable Management of Arthropod Pests of Tomato. Academic Press (2017). [Google Scholar]
  • F. Hemmati, S.A.A. Behjatnia, A. Moghadam, and A. Afsharifar. Induction of systemic resistance against cucumber mosaic virus (CMV) and tomato yellow leaf curl virus (TYLCV) in tomato. International Journal of Pest Management, 1–14 (2023). [CrossRef] [Google Scholar]
  • S.I.T.I. Herlinda. Ecology of Liriomyza spp. (Diptera: Agromyzidae) in field vegetables in South Sumatera. In Proceedings of an International Seminar on Organic Farming and Sustainable Agriculture in the Tropics and Subtropics (pp. 8–9) (2003). [Google Scholar]
  • L. Gianessi. The Benefits of insecticide use: Tomatoes. Crop Life Foundation, Washington, USA, 18 (2009). [Google Scholar]
  • O. Demirozer, K. Tyler‐Julian, J. Funderburk, N. Leppla, and S. Reitz. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Management Science, 68(12), 1537–1545 (2012). [CrossRef] [PubMed] [Google Scholar]
  • E.D. Meck, G.G. Kennedy, and J.F. Walgenbach. Effect of Tetranychus urticae (Acari: Tetranychidae) on yield, quality, and economics of tomato production. Crop Protection, 52, 84–90 (2013). [CrossRef] [Google Scholar]
  • C.R. Cardoso. Agressividade de Alternaria tomatophila, A. grandis e A. solani em Batateira e Tomateiro. Ph.D. Thesis, Universidade Federal de Viçosa: Viçosa, Brazil (2010). [Google Scholar]
  • F.J. Ferrandino, and W.H. Elmer. Reduction in tomato yield due to Septoria leaf spot. Plant Dis. 76, 208–211 (1992). [CrossRef] [Google Scholar]
  • Utkhede, R.S., and Mathur, S. 2006. Preventive and curative biological treatments for control of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 51, 363–373. [CrossRef] [Google Scholar]
  • T. Momol, P. Ji, K. Pernezny, R. McGovern, and S. Olson. Three Soilborne Tomato Diseases Caused by Ralstonia and Fusarium Species and their Field Diagnostics. EDIS 205, 1–6 (2008). [Google Scholar]
  • A. Rotter, P. Nikolić, N. Turnšek, P. Kogovšek, A. Blejec, K. Gruden and M. Dermastia. Statistical modeling of long-term grapevine response to ‘Candidatus Phytoplasma solani’ infection in the field. Eur J. Plant Pathol. 150, 653–668 (2018). [CrossRef] [Google Scholar]
  • G. Sharabani, S. Manulis-Sasson, L. Chalupowicz, M. Borenstein, R. Shulhani, M. Lofthouse, M. Sofer, O. Frenkel, O. Dror, and D. Shtienberg. Temperature at the early stages of Clavibacter michiganensis subsp. michiganensis infection affects bacterial canker development and virulence gene expression. Plant Pathol. 63, 1119–1129 (2014). [CrossRef] [Google Scholar]
  • F. Quaglino, Y. Zhao, P. Casati, D. Bulgari, P.A. Bianco, W. Wei, and R.E. Davis. “Candidatus Phytoplasma solani”, a novel taxon associated with stolbur and bois noir related diseases of plants. Int. J. Syst. Evol. Microbiol. 63, 2879–2894 (2013). [CrossRef] [PubMed] [Google Scholar]
  • M.A. Sevik, and M. Arli-Sokmen. Estimation of the effect of Tomato spotted wilt virus (TSWV) infection on some yield components of tomato. Phytoparasitica 40, 87–93 (2012). [CrossRef] [Google Scholar]
  • K.P.A. Mahjabeen, N. Sarwar, M.Y. Saleem, M. Asghar, Q. Iqbal, and F.F. Jamil. Effect of cucumber mosaic virus infection on morphology, yield and phenolic contents of tomato. Arch. Phytopathol. Pflanzenschutz 45, 766–782 (2012). [CrossRef] [Google Scholar]
  • M. Lapidot, M. Friedmann, O. Lachman, Y. Antignus, S. Nahon, S. Cohen, and M. Pilowsky. Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428 (1887). [Google Scholar]
  • E. Noris, and L. Miozzi. Real-Time PCR Protocols for the Quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia Virus in Tomato Plants and in Its Insect Vector. Methods Mol. Biol. 1236, 61–72 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Z.Y. Yan, H.Y. Ma, S.L. Han, C. Geng, Y.P. Tian, X.D. Li. First report of Tomato brown rugose fruit virus infecting tomato in China. Plant Dis. 103, 2973 (2019). [CrossRef] [Google Scholar]
  • M. Imran, M.A. Khan, M. Fiaz, M. Azeem, and M. Mustafa. Influence of environmental conditions on tomato mosaic virus disease development under natural condition. Pak. J. Phytopathol. 25, 117–122 (2013). [Google Scholar]
  • G. Parrella. Sources of resistance in wild Solanum germplasm (section Lycopersicon) to parietaria mottle virus, an emerging virus in the Mediterranean basin. Plant Pathol. 69, 1018–1025 (2020). [CrossRef] [Google Scholar]
  • J. Peters, R. Mumford, R. van der Vlugt, A. Alfaro Fernandez, G. Bese, J. Glyn, C. Lambourne, and M. Schenk. The Effect of Pepino mosaic virus on tomato yield. Acta Hortic. 914, 203–206 (2011). [CrossRef] [Google Scholar]
  • A.E. Mackie, M.J. Barbetti, B. Rodoni, S.J. McKirdy, and R.A.C. Jones. Effects of a Potato Spindle Tuber Viroid Tomato Strain on the Symptoms, Biomass, and Yields of Classical Indicator and Currently Grown Potato and Tomato Cultivars. Plant Dis. 103, 3009–3017 (2019). [CrossRef] [PubMed] [Google Scholar]
  • N. Gupta, S.C. Verma, P. L. Sharma, M. Thakur, P. Sharma, and D. Devi. Status of invasive insect pests of India and their natural enemies. J. Entom. Zool. Studies 7(1), 482–489 (2019). [Google Scholar]
  • D.R. Kachave, M.M. Sonkamble, and S.K. Patil. Population dynamics of major insect pests infesting to tomato, Lycopersicon esculentum (Miller). J. Pharmacog. Phytochem. 9(3), 344–348 (2020). [Google Scholar]
  • M.A. Hamza, M. Ishtiaq, M.A. Mehmood, M.A. Majid, M. Gohar, E. Radicetti, R. Mancinelli, N. Iqbal, and S. Civolani. Management of Vegetable Leaf Miner, Liriomyza Spp., (Diptera: Agromyzidae) in Vegetable Crops. Horticulturae 9, 255 (2023). https://doi.org/10.3390/horticulturae9020255 [CrossRef] [Google Scholar]
  • D. Kumar, P. Kumari, R. Kamboj et al. Entomopathogenic nematodes as potential and effective biocontrol agents against cutworms, Agrotis spp.: present and future scenario. Egypt J Biol Pest Control 32, 42 (2022) https://doi.org/10.1186/s41938-022-00543-5 [CrossRef] [Google Scholar]
  • C. Bragard, K. Dehnen-Schmutz, F. Di Serio, P. Gonthier, M.A. Jacques, J.A. Jaques Miret et al. Pest categorisation of Thrips palmi. EFSA J. 17(2):e05620 (2019) doi: 10.2903/j.efsa.2019.5620. [PubMed] [Google Scholar]
  • W.H. Lange, and L. Bronson. Insect pests of tomatoes. Annu. Rev. Entomol. 26(1), 345–371 (1981). [CrossRef] [Google Scholar]
  • S.E. Mrosso, P.A. Ndakidemi, and E.R. Mbega. Farmers’ Knowledge on Whitefly Populousness among Tomato Insect Pests and Their Management Options in Tomato in Tanzania. Horticulturae 9, 253 (2023). https://doi.org/10.3390/horticulturae9020253 [CrossRef] [Google Scholar]
  • T.R. Grasswitz. Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects. 10(6):179. (2019) doi: 10.3390/insects10060179. [CrossRef] [PubMed] [Google Scholar]
  • R.C. Stephenson, C.E. Coker, B.C. Posadas, G.R. Bachman, R.L. Harkess, J. J. Adamczyk, and P.R. Knight. Economic effect of insect pest management strategies on small-scale tomato production in Mississippi. HortTechnology, 30(1), 64–75 (2020). [CrossRef] [Google Scholar]
  • M. Mustafa, J.A. Adjei, L. Menyhárt, L. Csambalik, and Z. Szalai. Pest and Disease Impact on Tomato Genotypes in a Hedgerow System. Biol. Life Sci. Forum 27, 47. (2023) https://doi.org/10.3390/IECAG2023-15819 [Google Scholar]
  • M. Tudi, H. Li, H. Li, L. Wang, J. Lyu, L. Yang, S. Tong, Q.J. Yu, H.D. Ruan, A. Atabila, D.T. Phung, R. Sadler, and D. Connell. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics. 10(6):335 (2022). doi: 10.3390/toxics10060335. [Google Scholar]
  • LK. Meena, and B. Bairwa. Influence of abiotic and biotic factors on the incidence of major insect pests of tomato. The Ecoscan, 8(3-4), 309–313 (2014). [Google Scholar]
  • S. Skendžić, M. Zovko, I.P. Živković, V. Lešić, and D. Lemić. The Impact of Climate Change on Agricultural Insect Pests. Insects. 12(5):440 (2021). doi: 10.3390/insects12050440. [CrossRef] [PubMed] [Google Scholar]
  • J. Kroschel, N. Mujica, J. Okonya, and A. Alyokhin. Insect Pests Affecting Potatoes in Tropical, Subtropical, and Temperate Regions. In: Campos, H., Ortiz, O. (eds) The Potato Crop. Springer, Cham. (2020) https://doi.org/10.1007/978-3-030-28683-5_8 [Google Scholar]
  • C. Kumar, A.K. Singh, D.R. Joshi, and D.E. Clay. The Ecology of Intercropping Systems, TreeCover Dynamics of Grazing Lands, and Cover Crops for Soil Management. In: Agroecological Approaches for Sustainable Soil Management (Prasad MNV and Kumar C, Editors). Publisher: Johns Willey and Sons Lts., UK, pp 357–372 (2023); https://doi.org/10.1002/9781119911999.ch16 [CrossRef] [Google Scholar]
  • C.P. Huss, K.D. Holmes, and C.K. Blubaugh. Benefits and Risks of Intercropping for Crop Resilience and Pest Management. J. Econ. Entom. 115(5): 1350–1362 (2022), https://doi.org/10.1093/jee/toac045 [CrossRef] [PubMed] [Google Scholar]
  • B. Subedi, A. Poudel, and S. Aryal. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 14, 100733 (2023). [Google Scholar]
  • P.H.B. Togni, W.A. Marouelli, A.K. Inoue‐Nagata, C.S.S. Pires, and E.R. Sujii. Integrated cultural practices for whitefly management in organic tomato. J Appl. Entomol. 142(10), 998–1007 (2018). [CrossRef] [Google Scholar]
  • S. Lahiri, and D. Orr. Biological control in tomato production systems: Theory and practice. In Sustainable Management of Arthropod Pests of Tomato, pp. 253–267 (2018). Academic Press. [CrossRef] [Google Scholar]
  • S. Afreen, M. Rahman, M.M.U.I. Islam, M. Hasan, and S. Islam. Management of insect pests in tomato (Solanum lycopersicon L.) under different planting dates and mechanical support. J. Sci. Technol. Environ. Inform. 5(1), 336–346 (2017). [CrossRef] [Google Scholar]
  • E.N. Yardim, and C.A. Edwards). The influence of chemical management of pests, diseases and weeds on pest and predatory arthropods associated with tomatoes. Agric. Ecosys. Environ. 70(1), 31–48 (1998). [CrossRef] [Google Scholar]
  • W. Akhter, F.M. Shah, M. Yang, S. Freed, M. Razaq, A.G. Mkindi, and M. Hanif. Botanical biopesticides have an influence on tomato quality through pest control and are costeffective for farmers in developing countries. Plos One, 18(11), e0294775 (2023). [CrossRef] [PubMed] [Google Scholar]
  • L. Depenbusch, T. Sequeros, P. Schreinemachers, M. Sharif, K. Mannamparambath, N. Uddin, and P. Hanson. Tomato pests and diseases in Bangladesh and India: farmers’ management and potential economic gains from insect resistant varieties and integrated pest management. Int. J. Pest Manag. 1–15 (2023). [CrossRef] [Google Scholar]
  • M.C. Picanço, L. Bacci, A.L.B. Crespo, M.M.M. Miranda, and J.C. Martins. Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agr. Forest Entomol. 9(4), 327–335 (2007). [CrossRef] [Google Scholar]
  • M. Bouri, K.S. Arslan, and F. Sahin. ClimateSmart Pest Management in Sustainable Agriculture: Promises and Challenges. Sustainability 15, 4592 (2023). https://doi.org/10.3390/su15054592 [CrossRef] [Google Scholar]
  • M. Barzman, P. Bàrberi, A.N.E. Birch, P. Boonekamp, S. Dachbrodt-Saaydeh, B. Graf, ... and M. Sattin. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015). [CrossRef] [Google Scholar]
  • M. Singh, N. Pandey, and O.P. Sharma. IPM concept and strategies for sustainable agriculture. In Integrated Pest Management in Diverse Cropping Systems (pp. 31–59). Apple Academic Press (2023). [Google Scholar]
  • O.P. Lal, and S.K. Lal. Failure of control measures against Heliothis armigera (Hübner) infesting tomato in heavy pesticidal application areas in Delhi and satellite towns in western Uttar Pradesh and Haryana (India). J. Entomol. Res. 20(4), 355–364 (1996). [Google Scholar]
  • A. Kumar, G. Tiwari, and A.K. Singh. IPM practices for insect pests of major vegetable crops: An overview. Pharma. Innov. J. 11(3), 1728–1734 (2022). [Google Scholar]
  • M.S. Sharifzadeh, G. Abdollahzadeh, and C.A. Damalas. Farmers’ behaviour in the use of integrated pest management (IPM) practices: perspectives through the social practice theory. International Journal of Pest Management, 1–14 (2023). [CrossRef] [Google Scholar]
  • P. Han, C. Rodriguez-Saona, M.P. Zalucki, S.S. Liu, and N. Desneux. A theoretical framework to improve the adoption of green Integrated Pest Management tactics. Commun. Biol. 7(1), 337 (2024). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.