Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 10 | |
Section | Genetic Engineering and Biotechnology Innovation | |
DOI | https://doi.org/10.1051/bioconf/202411101006 | |
Published online | 31 May 2024 |
- Malhi, G. S., & Mann, J. J. (2018). Depression. Lancet (London, England), 392(10161), 2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2 [CrossRef] [Google Scholar]
- Song, Y.-M., Lee, K., & Sung, J. (2017). Genetic and environmental relationships between eating behavior and symptoms of anxiety and depression. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 24(5), 887–895. https://doi.org/10.1007/s40519-017-0445-2 [Google Scholar]
- Hasler G. (2010). Pathophysiology of depression: do we have any solid evidence of interest to clinicians. World psychiatry: official journal of the World Psychiatric Association (WPA), 9(3), 155–161. https://doi.org/10.1002/j.2051-5545.2010.tb00298.x [Google Scholar]
- Holtzheimer, P. E., 3rd, & Nemeroff, C. B. (2006). Future prospects in depression research. Dialogues in clinical neuroscience, 8(2), 175–189. https://doi.org/10.31887/DCNS.2006.8.2/pholtzheimer [CrossRef] [PubMed] [Google Scholar]
- Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of Major Depression: Review and meta-analysis. American Journal of Psychiatry, 157(10), 1552–1562. https://doi.org/10.1176/appi.ajp.157.10.1552 [CrossRef] [PubMed] [Google Scholar]
- Menke, A., Klengel, T., & B. Binder, E. (2012). Epigenetics, depression and antidepressant treatment. Current Pharmaceutical Design, 18(36), 5879–5889. https://doi.org/10.2174/138161212803523590 [CrossRef] [PubMed] [Google Scholar]
- Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1 [CrossRef] [PubMed] [Google Scholar]
- Agnihotri, S., Burrell, K. E., Wolf, A., Jalali, S., Hawkins, C., Rutka, J. T., & Zadeh, G. (2013). Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Archivum immunologiae et therapiae experimentalis, 61(1), 25–41. https://doi.org/10.1007/s00005-012-0203-0 [CrossRef] [PubMed] [Google Scholar]
- Schwartzbaum, J. A., Fisher, J. L., Aldape, K. D., & Wrensch, M. (2006). Epidemiology and molecular pathology of glioma. Nature clinical practice. Neurology, 2(9), 494–516. https://doi.org/10.1038/ncpneuro0289 [CrossRef] [PubMed] [Google Scholar]
- Mohammed, S., Dinesan, M., & Ajayakumar, T. (2022). Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: a retrospective study. Reports of practical oncology and radiotherapy: journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology, 27(6), 1026–1036. https://doi.org/10.5603/RPOR.a2022.0113 [Google Scholar]
- Zong, H., Verhaak, R. G., & Canoll, P. (2012). The cellular origin for malignant glioma and prospects for clinical advancements. Expert review of molecular diagnostics, 12(4), 383–394. https://doi.org/10.1586/erm.12.30 [CrossRef] [PubMed] [Google Scholar]
- Stewart, B. W., & Wild, C. P. (Eds.). (2014). World Cancer Report 2014. World Health Organization. [Google Scholar]
- Farrell, C. J., & Plotkin, S. R. (2007). Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurologic clinics, 25(4), 925-viii. https://doi.org/10.1016/j.ncl.2007.07.008 [CrossRef] [PubMed] [Google Scholar]
- Pranckeviciene, A., & Bunevicius, A. (2015). Depression screening in patients with brain tumors: a review. CNS oncology, 4(2), 71–78. https://doi.org/10.2217/cns.14.60 [CrossRef] [PubMed] [Google Scholar]
- Edelstein, K., Coate, L., Massey, C., Jewitt, N. C., Mason, W. P., & Devins, G. M. (2015). Illness intrusiveness and subjective well-being in patients with glioblastoma. Journal of Neuro-Oncology, 126(1), 127–135. https://doi.org/10.1007/s11060-015-1943-6 [Google Scholar]
- Seddighi, A., Seddighi, A. S., Nikouei, A., Ashrafi, F., & Nohesara, S. (2015). Psychological aspects in brain tumor patients: A prospective study. Hellenic journal of nuclear medicine, 18 Suppl 1, 63-67. [PubMed] [Google Scholar]
- Mugge, L., Mansour, T. R., Crippen, M., Alam, Y., & Schroeder, J. (2018). Depression and glioblastoma, complicated concomitant diseases: A systemic review of published literature. Neurosurgical Review, 43(2), 497–511. https://doi.org/10.1007/s10143-018-1017-2 [Google Scholar]
- Shadrina, M., Bondarenko, E. A., & Slominsky, P. A. (2018). Genetics Factors in Major Depression Disease. Frontiers in psychiatry, 9, 334. https://doi.org/10.3389/fpsyt.2018.00334 [CrossRef] [PubMed] [Google Scholar]
- Xie, Y., Wang, L., Xie, Z., Zeng, C., & Shu, K. (2018). Transcriptomics Evidence for Common Pathways in Human Major Depressive Disorder and Glioblastoma. International journal of molecular sciences, 19(1), 234. https://doi.org/10.3390/ijms19010234 [CrossRef] [PubMed] [Google Scholar]
- Phillips, K. A., Trosman, J. R., Kelley, R. K., Pletcher, M. J., Douglas, M. P., & Weldon, C. B. (2014). Genomic sequencing: assessing the health care system, policy, and big-data implications. Health affairs (Project Hope), 33(7), 1246–1253. https://doi.org/10.1377/hlthaff.2014.0020 [CrossRef] [PubMed] [Google Scholar]
- Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor protocols, 2015(11), 951–969. https://doi.org/10.1101/pdb.top084970 [CrossRef] [Google Scholar]
- Chang, J., Guo, C., Li, J., Liang, Z., Wang, Y., Yu, A., Liu, R., Guo, Y., Chen, J., & Huang, S. (2022). EN1 Regulates Cell Growth and Proliferation in Human Glioma Cells via Hedgehog Signaling. International journal of molecular sciences, 23(3), 1123. https://doi.org/10.3390/ijms23031123 [CrossRef] [PubMed] [Google Scholar]
- Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in neurosciences, 30(5), 211–219. https://doi.org/10.1016/j.tins.2007.03.001 [CrossRef] [PubMed] [Google Scholar]
- Sgadò, P., Viaggi, C., Fantacci, C., & Corsini, G. U. (2008). Characterization of the Engrailed mutant mice as experimental models for Parkinson's disease. Parkinsonism & related disorders, 14 Suppl 2, S103-S106. https://doi.org/10.1016/j.parkreldis.2008.04.011 [CrossRef] [PubMed] [Google Scholar]
- Le Pen, G., Sonnier, L., Hartmann, A., Bizot, J. C., Trovero, F., Krebs, M. O., & Prochantz, A. (2008). Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson's disease. Parkinsonism & related disorders, 14 Suppl 2, S107-S111. https://doi.org/10.1016/j.parkreldis.2008.04.007 [CrossRef] [PubMed] [Google Scholar]
- Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual review of biochemistry, 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425 [CrossRef] [PubMed] [Google Scholar]
- Joazeiro, C. A., & Weissman, A. M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell, 102(5), 549–552. https://doi.org/10.1016/s0092-8674(00)00077-5 [CrossRef] [PubMed] [Google Scholar]
- Donato, G., Iofrida, G., Lavano, A., Volpentesta, G., Signorelli, F., Pallante, P. L., Berlingieri, M. T., Pierantoni, M. G., Palmieri, D., Conforti, F., Maltese, L., Tucci, L., Amorosi, A., & Fusco, A. (2008). Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors. Clinical neuropathology, 27(4), 219–223. https://doi.org/10.5414/npp27219 [CrossRef] [PubMed] [Google Scholar]
- Jiang, L., Huang, C. G., Lu, Y. C., Luo, C., Hu, G. H., Liu, H. M., Chen, J. X., & Han, H. X. (2008). Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. Brain research, 1201, 161-166. https://doi.org/10.1016/j.brainres.2008.01.037 [CrossRef] [PubMed] [Google Scholar]
- Ma, R., Kang, X., Zhang, G., Fang, F., Du, Y., & Lv, H. (2016). High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncology letters, 11(3), 2300–2304. https://doi.org/10.3892/ol.2016.4171 [CrossRef] [PubMed] [Google Scholar]
- Li, T., Su, Q., Zhang, Z., Zhang, Y., Yang, M., Wang, Z., Guo, J., Wang, Z., Wu, M., Cai, H., & Qi, J. (2022). UBE2C-inhibition alleviated amyloid pathology and memory deficits in APP/PS1 mice model of ad. Progress in Neurobiology, 215, 102298. https://doi.org/10.1016/j.pneurobio.2022.102298 [CrossRef] [PubMed] [Google Scholar]
- Hindley, G., O'Connell, K. S., Rahman, Z., Frei, O., Bahrami, S., Shadrin, A., Hoegh, M. C., Cheng, W., Karadag, N., Lin, A., R.O. Dev and, L., Fan, C. C., Djurovic, S., Lagerberg, T. V., Dale, A. M., Smeland, O. B., & Andreassen, O. A. (2022). The shared genetic basis of mood instability and psychiatric disorders: A cross-trait Genome-wide association analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 189(6), 207–218. https://doi.org/10.1002/ajmg.b.32907 [CrossRef] [PubMed] [Google Scholar]
- Ingle R. A. (2011). Histidine biosynthesis. The arabidopsis book, 9, e0141. https://doi.org/10.1199/tab.0141 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.