Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 8 | |
Section | Genetic Engineering and Biotechnology Innovation | |
DOI | https://doi.org/10.1051/bioconf/202411101012 | |
Published online | 31 May 2024 |
- E.D. Sloan, Jr. C. K., Clathrate hydrates of Natural Gases. 2007. [CrossRef] [Google Scholar]
- Hammerschmidt, E. G., Formation of Gas Hydrates in Natural Gas Transmission Lines. Texoma Natural Gas Company 1934, 26 (8), 851-855. [Google Scholar]
- Koh, C. A. S. A., Jr. Eds, Natural Gas Hydrates in Flow Assurance. 2010. [Google Scholar]
- Wang, J.; Meng, Y.; Han, B.; Liu, Z.; Zhang, L.; Yao, H.; Wu, Z.; Chu, J.; Yang, L.; Zhao, J.; Song, Y., Hydrate blockage in subsea oil/gas flowlines: Prediction, prevention, and remediation. Chemical Engineering Journal 2023, 461. [Google Scholar]
- Xiaoyun L.I., a. L. H. G., And Torstein Austvik, Thermodynamic Inhibitors for Hydrate Plug Melting. Annals of the New York Academy of ences 2010, 912, 822-831. [Google Scholar]
- Kelland, M. A., History of the Development of Low Dosage Hydrate Inhibitors. Energy Fuels 2006, 20 (3), 825-847. [CrossRef] [Google Scholar]
- Renato, B. d. S. C., Eustáquio Vinicius Ribeiro Teixeira, Adriana Rodrigues, Rayza Rosa Tavares Renato, Natalia dos Santos, Effects of ethanol on the performance of kinetic hydrate inhibitors. Fluid Phase Equilibria 2018, 476, 112-117. [CrossRef] [Google Scholar]
- Tamsilian, Y.; Ebrahimi, A. N.; Ramazani S. A. A., Formation and Economic Study on Hydrate Technology with NGH Pellets. Journal of Dispersion Science and Technology 2013, 34 (2), 259-267. [CrossRef] [Google Scholar]
- Ke, W. C., Daoyi, A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists. Chinese Journal of Chemical Engineering 2019, 27 (9), 2049-2061. [CrossRef] [Google Scholar]
- Liu, J.; Yan, Y.; Chen, G.; Zhang, J.; Liu, S., Adsorption behavior of kinetic inhibitors on hydrate surfaces and its relation to the inhibition performance. Chemical Physics Letters 2021, 784. [Google Scholar]
- Li, W.; Pang, J.; Peng, L.; Fang, B.; Ou, W.; Tao, Z.; Liu, Z.; Ning, F., Microscopic Insights into the Effects of Anti-Agglomerant Surfactants on Surface Characteristics of Tetrahydrofuran Hydrate. Energy & Fuels 2023, 37 (5), 3741-3751. [CrossRef] [Google Scholar]
- Farhadian, A.; Shadloo, A.; Zhao, X.; Pavelyev, R. S.; Peyvandi, K.; Qiu, Z.; Varfolomeev, M. A., Challenges and advantages of using environmentally friendly kinetic gas hydrate inhibitors for flow assurance application: A comprehensive review. Fuel 2023, 336, 127055. [CrossRef] [Google Scholar]
- Baskaran, A. K., M. Venugopal, G. Manikkam, R. Joseph, J. Bhaskar, P. V., Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021, 189, 292-305. [CrossRef] [PubMed] [Google Scholar]
- Devriess, J. A. R. t. A. A. L., Adsorption inhibition as a mnechanismof freezing resistance in polar fishes. PNAS 1977, 74 (6), 2589-2593. [CrossRef] [PubMed] [Google Scholar]
- Knight, C. A.; DeVries, A. L., Melting Inhibition and Superheating of Ice by an Antifreeze Glycopeptide. Science 1989, 245 (4917), 505-507. [CrossRef] [PubMed] [Google Scholar]
- Artltur, L. Devries, T. L., Structure of a peptide antifeeeze and mechanism of adsorption toice. Biochim.Biophys 1977, 495, 388-392. [CrossRef] [Google Scholar]
- Price, A. L. D. V. a. T. J., Role of glycopeptides and pepddes in inhibition of crystallization of water in polar fishes. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 1984, 304 (1121), 575-588. [CrossRef] [Google Scholar]
- C. A. Knight, E. D., and A. L. DeVries, Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophysical Society 1993, 64, 252-259. [CrossRef] [Google Scholar]
- Wierzbicki, A. D., P. Cheatham, T. E., 3rd Knickelbein, J. E. Haymet, A. D. Madura, J. D., Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophys J 2007, 93 (5), 1442-51. [CrossRef] [PubMed] [Google Scholar]
- David R. Nutt, A. J. C. S., Dual Function of the Hydration Layer around an Antifreeze Protein Revealed by Atomistic Molecular Dynamics Simulations. J Am Chem Soc 2008, 130, 13066-13073. [CrossRef] [PubMed] [Google Scholar]
- Grabowska, J. K., A. Zielkiewicz, J., Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity. J Chem Phys 2016, 145 (7), 075101. [CrossRef] [PubMed] [Google Scholar]
- Hudait, A. Q., Y. Odendahl, N. Molinero, V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019, 141 (19), 7887-7898. [CrossRef] [PubMed] [Google Scholar]
- Huang Zeng, L. D. W., Virginia K. Walker, and John A. Ripmeester, J. A., The inhibition of tetrahydrofuran clathrate-hydrate formation with antifreeze protein. Can. J. Phys 2003, 81, 17-24. [CrossRef] [Google Scholar]
- Huang Zeng, I. L. M., and John A. Ripmeester, Effect of Antifreeze Protein on Nucleation, Growth and Memory of Gas Hydrates. AIChE Journal 2006, 52 (9), 3304-3309. [CrossRef] [Google Scholar]
- Huang Zeng, L. D. W., Virginia K. Walker, and John A. Ripmeester, Effect of Antifreeze Proteins on the Nucleation, Growth, and the Memory Effect during Tetrahydrofuran Clathrate Hydrate Formation. J Am Chem Soc 2006, 128, 2844-2850. [CrossRef] [PubMed] [Google Scholar]
- Mu, L. R., Hans SoGaard, T. Max, M. Jorgensen, Thomas de Jongh, Willem A. von Solms, Nicolas, Inhibition of methane hydrate nucleation and growth by an antifreeze protein. Journal of Petroleum Science and Engineering 2019, 183, 106388-106395. [CrossRef] [Google Scholar]
- Al-Adel, S.; Dick, J. A. G.; El-Ghafari, R.; Servio, P., The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilibria 2008, 267 (1), 92-98. [CrossRef] [Google Scholar]
- Perfeldt, C. M. C., Pei Cheng Daraboina, Nagu Friis, Dennis Kristiansen, Erlend Ramlov, Hans Woodley, John M. Kelland, Malcolm A. von Solms, Nicolas, Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle Rhagium mordax. Energy & Fuels 2014, 28 (6), 3666-3672. [CrossRef] [Google Scholar]
- Bagherzadeh, S. A.; Alavi, S.; Ripmeester, J. A.; Englezos, P., Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor. Phys Chem Chem Phys 2015, 17 (15), 9984-90. [CrossRef] [PubMed] [Google Scholar]
- Maddah, M. M., M. Peyvandi, K., The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Phys Chem Chem Phys 2019, 21 (39), 21836-21846. [CrossRef] [PubMed] [Google Scholar]
- Sicheri, F., and D. S. C. Yang, Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 1995, 375, 427-431. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.