Open Access
Issue
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
Article Number 01013
Number of page(s) 6
Section Genetic Engineering and Biotechnology Innovation
DOI https://doi.org/10.1051/bioconf/202411101013
Published online 31 May 2024
  • Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A. (2023) Cancer statistics, 2023, CA Cancer J Clin 73, 17-48. [CrossRef] [PubMed] [Google Scholar]
  • Andrei, P., Battuello, P., Grasso, G., Rovera, E., Tesio, N., and Bardelli, A. (2022) Integrated approaches for precision oncology in colorectal cancer: The more you know, the better, Semin Cancer Biol 84, 199-213. [CrossRef] [PubMed] [Google Scholar]
  • Biller, L. H., and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review, Jama 325, 669-685. [CrossRef] [PubMed] [Google Scholar]
  • Angelin, J., and Kavitha, M. (2020) Exopolysaccharides from probiotic bacteria and their health potential, International Journal of Biological Macromolecules 162, 853-865. [CrossRef] [PubMed] [Google Scholar]
  • Wang, C. L., Huang, T. H., Liang, T. W., Fang, C. Y., and Wang, S. L. (2011) Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023, N Biotechnol 28, 559-565. [CrossRef] [PubMed] [Google Scholar]
  • Meng, M., Huo, R., Wang, Y., Ma, N., Shi, X., Shen, X., and Chang, G. (2022) Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway, Int J Biol Macromol 222, 2375-2391. [CrossRef] [PubMed] [Google Scholar]
  • He, D., Wu, S., Yan, L., Zuo, J., Cheng, Y., Wang, H., Liu, J., Zhang, X., Wu, M., Choi, J. I., and Tong, H. (2019) Antitumor bioactivity of porphyran extracted from Pyropia yezoensis Chonsoo2 on human cancer cell lines, J Sci Food Agric 99, 6722-6730. [CrossRef] [PubMed] [Google Scholar]
  • Liu, M., Li, S., Wang, X., Zhu, Y., Zhang, J., Liu, H., and Jia, L. (2018) Characterization, anti-oxidation and anti-inflammation of polysaccharides by Hypsizygus marmoreus against LPS-induced toxicity on lung, Int J Biol Macromol 111, 121-128. [CrossRef] [PubMed] [Google Scholar]
  • Guo, F., Zhuang, X., Han, M., and Lin, W. (2020) Polysaccharides from Enteromorpha prolifera protect against carbon tetrachloride-induced acute liver injury in mice via activation of Nrf2/HO-1 signaling, and suppression of oxidative stress, inflammation and apoptosis, Food Funct 11, 4485-4498. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen, H. T., Gu, M., Werlinger, P., Cho, J. H., Cheng, J., and Suh, J. W. (2022) Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated NonAlcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota, Int J Mol Sci 23. [PubMed] [Google Scholar]
  • Hwang, J., Yadav, D., Lee, P. C., and Jin, J. O. (2022) Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation, Phytother Res 36, 761-777. [CrossRef] [PubMed] [Google Scholar]
  • Zong, S., Ye, H., Ye, Z., He, Y., Zhang, X., and Ye, M. (2022) Polysaccharides from Lachnum sp. Inhibited colitis-associated colon tumorigenesis in mice by modulating fecal microbiota and metabolites, Int Immunopharmacol 108, 108656. [CrossRef] [PubMed] [Google Scholar]
  • Alagawany, M., Madkour, M., El-Saadony, M. T., and Reda, F. M. (2021) Paenibacillus polymyxa (LM31) as a new feed additive: Antioxidant and antimicrobial activity and its effects on growth, blood biochemistry, and intestinal bacterial populations of growing Japanese quail, Animal Feed Science and Technology 276, 114920. [Google Scholar]
  • Pandey, A. K., Barbetti, M. J., and Lamichhane, J. R. (2023) Paenibacillus polymyxa, Trends Microbiol 31, 657-659. [CrossRef] [PubMed] [Google Scholar]
  • Trabelsi, I., Ktari, N., Ben Slima, S., Triki, M., Bardaa, S., Mnif, H., and Ben Salah, R. (2017) Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca6, International Journal of Biological Macromolecules 103, 194-201. [CrossRef] [PubMed] [Google Scholar]
  • Wang, Y. Q., Huang, J. X., and Zhou, W. W. (2020) Isolation, characterization and cytoprotective effects against UV radiation of exopolysaccharide produced from Paenibacillus polymyxa PYQ1, J Biosci Bioeng 130, 283-289. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, S., Liu, H., Li, W., Liu, X., Ma, L., Zhao, T., Ding, Q., Ding, C., and Liu, W. (2023) Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism, Int J Biol Macromol 248, 125949. [CrossRef] [PubMed] [Google Scholar]
  • Daba, G. M., Elnahas, M. O., and Elkhateeb, W. A. (2021) Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications, International Journal of Biological Macromolecules 173, 79-89. [CrossRef] [PubMed] [Google Scholar]
  • Kalliolias, G. D., and Ivashkiv, L. B. (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies, Nat Rev Rheumatol 12, 49-62. [CrossRef] [PubMed] [Google Scholar]
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B., and Niu, G. (2020) Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1, J Biosci Bioeng 129, 206-214. [CrossRef] [PubMed] [Google Scholar]
  • Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B., and Niu, G. (2020) Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1, Journal of Bioscience and Bioengineering 129, 206-214. [CrossRef] [PubMed] [Google Scholar]
  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry 28, 350-356. [CrossRef] [Google Scholar]
  • Liu, J., Luo, J., Ye, H., and Zeng, X. (2012) Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3, Food Chem Toxicol 50, 767-772. [CrossRef] [PubMed] [Google Scholar]
  • Martínez, M.-A., Ares, I., Martínez, M., Lopez-Torres, B., Maximiliano, J.-E., Rodríguez, J.-L., Martínez-Larrañaga, M.-R., Anadón, A., Peteiro, C., Rubiño, S., and Hortos, M. (2021) Brown marine algae Gongolaria baccata extract protects Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide, Food and Chemical Toxicology 156, 112460. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka, T., Narazaki, M., and Kishimoto, T. (2014) IL-6 in inflammation, immunity, and disease, Cold Spring Harb Perspect Biol 6, a016295. [CrossRef] [PubMed] [Google Scholar]
  • Baggiolini, M., and Clark-Lewis, I. (1992) Interleukin-8, a chemotactic and inflammatory cytokine, FEBS Lett 307, 97-101. [CrossRef] [PubMed] [Google Scholar]
  • Chen, Y., Zhang, M., and Ren, F. (2019) A Role of Exopolysaccharide Produced by Streptococcus thermophilus in the Intestinal Inflammation and Mucosal Barrier in Caco-2 Monolayer and Dextran Sulphate Sodium-Induced Experimental Murine Colitis, Molecules 24, 513. [CrossRef] [PubMed] [Google Scholar]
  • Shah, S. C., and Itzkowitz, S. H. (2022) Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management, Gastroenterology 162, 715-730.e713. [CrossRef] [PubMed] [Google Scholar]
  • Frick, A., Khare, V., Paul, G., Lang, M., Ferk, F., Knasmüller, S., Beer, A., Oberhuber, G., and Gasche, C. (2018) Overt Increase of Oxidative Stress and DNA Damage in Murine and Human Colitis and Colitis-Associated Neoplasia, Mol Cancer Res 16, 634-642. [CrossRef] [PubMed] [Google Scholar]
  • Schmitt, M., and Greten, F. R. (2021) The inflammatory pathogenesis of colorectal cancer, Nature Reviews Immunology 21, 653-667. [CrossRef] [PubMed] [Google Scholar]
  • He, J. W., Yang, A. H., Zhao, X. Y., Liu, Y., Liu, S. Y., and Wang, D. (2021) Anti-colon cancer activity of water-soluble polysaccharides extracted from Gloeostereum incarnatum via Wnt/ß-catenin signaling pathway, Food Science and Human Wellness 10, 460-470. [CrossRef] [Google Scholar]
  • Ma, L., Xu, G. B., Tang, X., Zhang, C., Zhao, W., Wang, J., and Chen, H. (2020) Anti-cancer potential of polysaccharide extracted from hawthorn (Crataegus.) on human colon cancer cell line HCT116 via cell cycle arrest and apoptosis, Journal of Functional Foods 64, 103677. [CrossRef] [Google Scholar]
  • Qi, W. C., Zhou, X. T., Wang, J. Q., Zhang, K., Zhou, Y. J., Chen, S. P., Nie, S. P., and Xie, M. Y. (2020) Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling, Carbohydrate Polymers 237. [Google Scholar]
  • Di, W., Li, X., and Yang, Q. Y. (2023) Polysaccharide of Lactobacillus casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2, Asia-Pacific Journal of Clinical Oncology 19, E248-E257. [CrossRef] [PubMed] [Google Scholar]
  • Roca-Lema, D., Martinez-Iglesias, O., Portela, C. F. D., Rodríguez-Blanco, A., Valladares-Ayerbes, M., Díaz-Díaz, A., Casas-Pais, A., Prego, C., and Figueroa, A. (2019) In Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells, International Journal of Medical Sciences 16, 231-240. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.