Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 14 | |
Section | Genetic Engineering and Biotechnology Innovation | |
DOI | https://doi.org/10.1051/bioconf/202411101019 | |
Published online | 31 May 2024 |
- Yang, Z., Wu, H., Dai, D., Yuan, Y., & Shao, X. ZNF692 Promotes the Progression of Colon Adenocarcinoma by Regulating HSF4 Expression. Iran J Public Health, 52(12), 2601-2610 (2023) [PubMed] [Google Scholar]
- Bray, F., Parkin, D. M., & African Cancer Registry Network. Cancer in sub-Saharan Africa in 2020: a review of current estimates of the national burden, data gaps, and future needs. The Lancet. Oncology, 23(6), 719–728 (2022) [CrossRef] [PubMed] [Google Scholar]
- Rosenberg, P. S., & Miranda-Filho, A. Advances in statistical methods for cancer surveillance research: an age-period-cohort perspective. Frontiers in oncology, 13, 1332429 (2024) [CrossRef] [PubMed] [Google Scholar]
- Vieira, A. R., Abar, L., Greenwood, D., & Norat, T. Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Annals of oncology, 28(8), 1788-1802 (2017) [CrossRef] [PubMed] [Google Scholar]
- Nakagawa, K., Ishibe, Goto, K., & Endo, I. Effects of neoadjuvant chemotherapy for patients with obstructive colon cancer: A multicenter propensity score-matched analysis (YCOG2101). Annals of gastroenterological surgery, 8(2), 262–272 (2023) [Google Scholar]
- Berlin, C., Mauerer, B. H., Fichtner-Feigl, S., … Kesselring, R. Single-cell deconvolution reveals high lineage- and location-dependent heterogeneity in mesenchymal multivisceral stage 4 colorectal cancer. The Journal of clinical investigation, 134(5), e169576 (2023) [Google Scholar]
- Harada, A., Matsumoto, S., Eguchi, H., & Kikuchi, A. Localization of KRAS downstream target ARL4C to invasive pseudopods accelerates pancreatic cancer cell invasion. eLife, 10, e66721 (2021) [CrossRef] [PubMed] [Google Scholar]
- Karlsson, S., & Nyström, H. The extracellular matrix in colorectal cancer and its metastatic settling - Alterations and biological implications. Critical reviews in oncology/hematology, 175, 103712 (2022) [CrossRef] [PubMed] [Google Scholar]
- Starzer, A. M., Preusser, M., & Berghoff, A. S. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Therapeutic advances in medical oncology, 14, 17588359221096219 (2022) [CrossRef] [Google Scholar]
- Gao, J., Wu, Z., Zhao, Xu, Q., Chen, H., Chen, D., & Sun, Y. Allosteric inhibition reveals SHP2-mediated tumor immunosuppression in colon cancer by single-cell transcriptomics. Acta pharmaceutica Sinica. B, 12(1), 149–166 (2022) [CrossRef] [Google Scholar]
- Li, Y., Zhou, H., Liu, P., Lv, D. H., Zhang, X., & Ke, Y. SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPa axis. The Journal of clinical investigation, 133(4), e162870 (2023) [Google Scholar]
- Estrella, V., Chen, T., Gatenby, R. A., & Gillies, R. J. Acidity generated by the tumor microenvironment drives local invasion. Cancer research, 73(5), 1524-1535 (2013) [CrossRef] [PubMed] [Google Scholar]
- Castosa, R., Martinez-Iglesias, O., Roca-Lema, M., Concha, Á., & Figueroa, A. Hakai overexpression effectively induces tumour progression and metastasis in vivo. Scientific reports, 8(1), 3466 (2018) [CrossRef] [PubMed] [Google Scholar]
- Nenkov, M., Ma, Y., Gaßler, N., & Chen, Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. International journal of molecular sciences, 22(12), 6262 (2021) [CrossRef] [PubMed] [Google Scholar]
- Zhao, L., Lee, V. H. F., Ng, M. K., & Bijlsma, M. F. Molecular subtyping of cancer: current status and moving toward clinical applications. Briefings in bioinformatics, 20(2), 572-584 (2019) [CrossRef] [PubMed] [Google Scholar]
- Chen, M., Linstra, R., & van Vugt, M. A. T. M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochimica et biophysica acta. Reviews on cancer, 1877(1), 188661 (2022) [Google Scholar]
- Nakazawa, M. A. M., Higashihara, K., & Okuno, Y. Novel cancer subtyping method based on patient-specific gene regulatory network. Scientific reports, 11(1), 23653 (2021) [CrossRef] [PubMed] [Google Scholar]
- Colaprico, A., Silva, T. C., Olsen, Bontempi, G., & Noushmehr, H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic acids research, 44(8), e71 (2016) [Google Scholar]
- Liberzon, A., Birger, C., Mesirov, J. P., & Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems, 1(6), 417-425 (2015) [CrossRef] [PubMed] [Google Scholar]
- Karim, M.R., Beyan, O.D., Cochez, M., & Decker, S. Deep learning-based clustering approaches for bioinformatics. Briefings in Bioinformatics, 22, 393-415 (2020) [Google Scholar]
- Ritchie, M. E., Phipson, B., C. W., Shi, W., & Smyth, G. K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research, 43(7), e47 (2015) [Google Scholar]
- Shen, W., Song, Z., Zhong, X., He, X., Wang, T., Li, S., & Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 1(3), e36 (2022) [CrossRef] [Google Scholar]
- Wu, T., Hu, E., Xu, S., Chen, M., Fu, X., Liu, S., Bo, X., & Yu, G.. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2(3), 100141. (2021) [Google Scholar]
- Hänzelmann, S., Castelo, R., & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC bioinformatics, 14, 7 (2013) [CrossRef] [PubMed] [Google Scholar]
- Zeng, D., Ye, Z., Shen, R., Yu, G., Shi, M., & Liao, W. IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Frontiers in immunology, 12, 687975 (2021) [CrossRef] [PubMed] [Google Scholar]
- Thorsson, V., Gibbs, D. L., E., Gao, G. F., Mose, L. E.. Shmulevich, I. The Immune Landscape of Cancer. Immunity, 48(4), 812-830.e14 (2018) [CrossRef] [PubMed] [Google Scholar]
- Jiang, P., Gu, S., A., Wucherpfennig, K. W., & Liu, X. S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nature medicine, 24(10), 1550-1558 (2018) [CrossRef] [PubMed] [Google Scholar]
- Pentiuk, N., & Motsiuk, V. Evaluation of nutritional status in patients with liver cirrhosis. Validity and prognostic value of the Patient-Generated Subjective Global Assessment. Przeglad gastroenterologiczny, 18(3), 327-333 (2023) [PubMed] [Google Scholar]
- Lam, C. S. N., Bharwani, A. A., Lo, C. M., & Cheung, T. T. A machine learning model for colorectal liver metastasis post-hepatectomy prognostications. Hepatobiliary surgery and nutrition, 12(4), 495-506 (2023) [CrossRef] [PubMed] [Google Scholar]
- Shoeibi, A., Ghassemi, N., Khadem, A., & Rajendra Acharya, U. Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression. Cognitive neurodynamics, 17(6), 1501-1523 (2023) [CrossRef] [PubMed] [Google Scholar]
- Yang, Y. Y., Gao, Z. X., Liu, Z. S., & Wu, P. Identification of ULK1 as a novel mitophagy-related gene in diabetic nephropathy. Frontiers in endocrinology, 13, 1079465 (2023) [CrossRef] [PubMed] [Google Scholar]
- Mao, Y., Hou, X., Fu, S., & Luan, J. Transcriptomic and machine learning analyses identify hub genes of metabolism and host immune response that are associated with the progression of breast capsular contracture. Genes & diseases, 11(3), 101087 (2023) [Google Scholar]
- Cheng, V., Oveisi, N., J. M., Murphy, R. A., & De Vera, M. A. Colorectal Cancer and Onset of Anxiety and Depression: A Systematic Review and MetaAnalysis. Current oncology, 29(11), 8751–8766 (2022) [CrossRef] [Google Scholar]
- Mellman, I., & Yarden, Y. Endocytosis and cancer. Cold Spring Harbor perspectives in biology, 5(12), a016949 (2013) [CrossRef] [PubMed] [Google Scholar]
- Banushi, B., Joseph, S. R., Lum, B., Lee, J. J., & Simpson, F. Endocytosis in cancer and cancer therapy. Nature reviews. Cancer, 23(7), 450–473 (2023) [PubMed] [Google Scholar]
- Chew, H. Y., De Lima, P. O., Gonzalez Cruz, F., Foote, M., … Simpson, F. Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell, 180(5), 895-914.e27 (2020) [CrossRef] [PubMed] [Google Scholar]
- Wills, R. C., & Hammond, G. R. V. PI(4,5)P2: signaling the plasma membrane. The Biochemical journal, 479(21), 2311–2325 (2022) [CrossRef] [PubMed] [Google Scholar]
- Bang, Y. J., Hu, Z., Li, Y., Raj, P., Herz, J., & Hooper, L. V. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science, 373(6561), eabf9232 (2021). [CrossRef] [PubMed] [Google Scholar]
- Doles, J., & Hemann, M. T. Nek4 status differentially alters sensitivity to distinct microtubule poisons. Cancer research, 70(3), 1033–1041 (2010) [CrossRef] [PubMed] [Google Scholar]
- Ding, N. H., Zhang, L., Xiao, Z., W. H., & Sun, L. Q. NEK4 kinase regulates EMT to promote lung cancer metastasis. Journal of cellular and molecular medicine, 22(12), 5877–5887 (2018) [CrossRef] [PubMed] [Google Scholar]
- Basei, F. L., de Castro Ferezin, Zorzano, A., & Kobarg, J. Nek4 regulates mitochondrial respiration and morphology. The FEBS journal, 289(11), 3262–3279 (2022) [CrossRef] [PubMed] [Google Scholar]
- Roliński, M., Montaldo, N. P., Sætrom, P., & van Loon, B. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic acids research, 49(3), 1470–1484 (2021) [Google Scholar]
- KuKuuluvainen, E., Domènech-Moreno, E., Niemelä, E. H., & Mäkelä, T. P. Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells. Molecular and cellular biology, 38(11), e00573-17 (2018) [PubMed] [Google Scholar]
- Zhang, N., Song, Y., Xu, Y., & Yang, M. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Theranostics, 10(20), 9378–9394 (2020) [CrossRef] [PubMed] [Google Scholar]
- Fant, C. B., & Taatjes, D. J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription, 10(2), 76–90 (2019) [CrossRef] [PubMed] [Google Scholar]
- Glorieux, C., Xia, X., & Huang, P. The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers, 13(17), 4426 (2021) [CrossRef] [PubMed] [Google Scholar]
- Zhang, X., Liu, J., Cheng, Y., Zhu, & Cao, X. Metabolic enzyme Suclg2 maintains tolerogenicity of regulatory dendritic cells diffDCs by suppressing Lactb succinylation. Journal of autoimmunity, 138, 103048 (2023) [CrossRef] [PubMed] [Google Scholar]
- Feng, L., Sun, X., Csizmadia, S., Murakami, T., & Wu, Y. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia, 13(3), 206–216 (2011) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.