Open Access
Issue |
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 8 | |
Section | Biomedical Advances and Personalized Medicine | |
DOI | https://doi.org/10.1051/bioconf/202411102007 | |
Published online | 31 May 2024 |
- Beigel, R., Wunderlich, N. C., Ho, S. Y., Arsanjani, R., Siegel, R. J. (2014) The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc Imaging, 7: 1251-1265. [CrossRef] [PubMed] [Google Scholar]
- Yamaji K., Fujimoto S., Yutani C., Hashimoto T., Nakamura S. (2002) Is the Site of Thrombus Formation in the Left Atrial Appendage Associated with the Risk of Cerebral Embolism? Cardiology., 97: 104-110. [CrossRef] [PubMed] [Google Scholar]
- Musotto, G., Monteleone, A., Vella, Danila D. L., Sofia, V., Alessia, P., Giuseppe, Z., Bernardo, P., Antonio, C., Andrew, B., Giorgia, M., Burriesci, G. (2022) The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation. Front Cardiovasc Med., 9: 894187. [CrossRef] [Google Scholar]
- Khurram, I. M., Dewire, J., Mager, M., Maqbool, F. Zimmerman, S.L., Zipunnikov, V., Beinart, R., Marine, J.E., Spragg, D.D., Berger, R.D., Ashikaga, H., Nazarian, S., Calkins, H. (2013) Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm., 10: 1843-1849. [CrossRef] [Google Scholar]
- Liu, J., Yu, T., Tan, C., Li, H., Zheng, Y., Zheng, S. Wen, K., Wang, J., Geng, D., Zhou, S. (2023) How the trabeculae protrude within the left atrial appendage is the key factor affecting thrombosis in patients with atrial fibrillation. Int J Cardiovasc Imaging., 39: 2259-2267. [CrossRef] [Google Scholar]
- Pollick C., Taylor D. (1991) Assessment of left atrial appendage function by transesophageal echocardiography: Implications for the developme-nt of thrombus. Circulation., 84: 223-231. [CrossRef] [PubMed] [Google Scholar]
- Hondo, T., Okamoto, M., Yamane, T., Kawagoe, T., Karakawa, S., Yamagata, T., Matsuura, H. Kajiyama, G. (1995) The role of the left atrial appendage. A volume loading study in open-chest dogs. Jpn Heart J., 36: 225-34. [CrossRef] [PubMed] [Google Scholar]
- Hitch, D. C., Nolan, S. P. (1981) Descriptive analysis of instantaneous left atrial volume--withspecial reference to left atrial function. J Surg Res., 30: 110-120. [CrossRef] [Google Scholar]
- Ma, N., Lu, R., Zhao, D., Jiang, Z., Tang, M., Bao, C., Mei, J.. (2020) Left Atrial Appendage Fibrosis and 3-Year Clinical Outcomes in Atrial Fibrillation After Endoscopic Ablation: A Histologic Analysis. Ann Thorac Surg., 109: 69-76. [CrossRef] [Google Scholar]
- Dzeshka, M. S., Lip, G. Y., Snezhitskiy, V., Shantsila, E. (2015) Cardiac Fibrosis in Patients With Atrial Fibrillation: Mechanisms and Clinical Implications. J. Am Coll Cardiol., 66: 943-959. [CrossRef] [Google Scholar]
- Grassinger, J. M., Henrich, M., Echevarria, A. C., Marz, I., Henrich, E., Bartel, A., Schneider, M., Aupperle-Lellbach, H. (2021) Correlation of Histopathological Changes in the Left Atrium and Left Atrial Appendage with the Degree of Dilation in Cats. J. Comp Pathol., 189: 8-25. [CrossRef] [Google Scholar]
- Shirani, J., Alaeddini, J. (2000) Structural remodeling of the left atrial appendage in patients with chronic non-valvular atrial fibrillation: Implications for thrombus formation, systemic embolism, and assessment by transesophageal echocardiography. Cardiovasc Pathol., 9: 95-101. [CrossRef] [Google Scholar]
- Nordsletten, D., Capilnasiu, A., Zhang, W., Wittgenstein, A., Hadjicharalambous, M., Sommer, G., Sinkus, R., Holzapfel, G. A. (2021) A viscoelastic model for human myocardium. Acta Biomater., 135: 441-457. [CrossRef] [Google Scholar]
- Vandemaele, P., Vander Linden, K., Deferm, S., Jashari, R., Rega, F., Bertrand, P., Vandervoort, P. Vander Sloten, J., Famaey, N., Fehervary, H. (2022) Alterations in Human Mitral Valve Mechanical Properties Secondary to Left Ventricular Remodeling: A Biaxial Mechanical Study. Front Cardio- vasc Med, 9: 876006. [CrossRef] [Google Scholar]
- Bellini, C., Di Martino, E. S., Federico, S. (2013) Mechanical behaviour of the human atria. Ann Biomed Eng., 41: 1478-1490. [CrossRef] [PubMed] [Google Scholar]
- Bellini, C., Di Martino, E. S. (2012) A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J Biomech Eng., 134: 021008. [CrossRef] [PubMed] [Google Scholar]
- Javani, S., Gordon, M., Azadani, A. N. (2016) Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model. Ann Biomed Eng., 44: 3266-3283. [CrossRef] [PubMed] [Google Scholar]
- Fung, Y.C. (2013) Biomechanics: Mechanical Properties of Living Tissues. Springer Science & Business Media., San Diego. [Google Scholar]
- Santago A.C., Kemper A.R., McNally C., Sparks J.L., Duma S.M. (2009) Freezing affects the mechanical properties of bovine liver. Biomedical Sciences Instrumentation., 45: 24-29. [Google Scholar]
- O'Leary, S.A., Doyle, B. J., McGloughlin, T. M. (2014) The impact of long-term freezing on the mechanical properties of porcine aortic tissue. J. Mech Behav Biomed Mater., 37: 165-173. [CrossRef] [Google Scholar]
- Li, Z., Luo, T., Wang, S., Jia, H., Gong, Q., Liu, X., Sutcliffe, M. P., Zhu, H., Liu, Q., Chen, D., Xiong, J., Teng, Z. (2022) Mechanical and histological characteristics of aortic dissection tissues. Acta Biomater., 146: 284-294. [CrossRef] [Google Scholar]
- Bol, M., Iyer, R., Garces-Schroder, M., Kohn, S. Dietzel, A. (2020) Mechano-geometrical skeletal muscle fibre characterisation under cyclic and relaxation loading. J. Mech Behav Biomed Mater., 110: 104001. [CrossRef] [Google Scholar]
- Kubikova, T., Kochova, P., Brazdil, J., Spatenka, J. Burkert, J., Kralickova, M., Tonar, Z. (2017) The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps. Ann Anat., 212: 17-26. [CrossRef] [Google Scholar]
- Miyauchi, S., Tokuyama, T., Uotani, Y., Miyamoto, S., Ikeuchi, Y., Okamura, S., Okubo, Y., Katayama, K., Takasaki, T., Nakatani, N., Matsudaira, Y., Furusho, H., Miyauchi, M., Takahashi, S., Nakano, Y. (2022) Association between left atrial appendage fibrosis and thrombus formation: A histological approach. J Cardiovasc Electrophysiol., 33: 677-687. [CrossRef] [PubMed] [Google Scholar]
- Karim, N., Ho, S. Y., Nicol, E., Li, W., Zemrak, F. Markides, V., Reddy, V., Wong, T. (2020) The left atrial appendage in humans: structure, physiology, and pathogenesis. EUROPACE., 22: 5-18. [CrossRef] [PubMed] [Google Scholar]
- Mikheev, L. D. (2002) Photochemical lasers on electronic molecular transitions. Quantum Electronics., 32: 1122-1132. [CrossRef] [Google Scholar]
- Stemper, B. D., Yoganandan, N., Stineman, M. R. Gennarelli, T.A., Baisden, J.L., Pintar, F.A. (2007) Mechanics of fresh, refrigerated, and frozen arterial tissue. J Surg Res., 139: 236-242. [CrossRef] [Google Scholar]
- Shirani, J., Alaeddini, J. (2000) Structural remodeling of the left atrial appendage in patients with chronic non-valvular atrial fibrillation: Implications for thrombus formation, systemic embolism, and assessment by transesophageal echocardiography. Cardiovasc Pathol., 9: 95-101. [CrossRef] [Google Scholar]
- Hensey, M., O'Neill, L., Mahon, C., Keane, S., Fabre, A., Keane, D. (2018) A Review of the Anatomical and Histological Attributes of the Left Atrial Appendage with Descriptive Pathological Examination of Morphology and Histology. J. Atr Fibrillation., 10: 6-1650. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.