Open Access
Issue
BIO Web Conf.
Volume 111, 2024
2024 6th International Conference on Biotechnology and Biomedicine (ICBB 2024)
Article Number 02008
Number of page(s) 6
Section Biomedical Advances and Personalized Medicine
DOI https://doi.org/10.1051/bioconf/202411102008
Published online 31 May 2024
  • Caldwell R B, Toque H A, Narayanan S P, et al. Arginase: An old enzyme with new tricks[J]. Trends Pharmacol. Sci., 2015, 36(6): 395–405. [CrossRef] [Google Scholar]
  • Scott J A, Maarsingh H., Holguin F., et al. Arginine Therapy for Lung Diseases[J]. Front. Pharmacol., 2021, 12(March): 1-7. [Google Scholar]
  • Li Z., Wang L., Ren Y., et al. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases [J]. Cell Death Discov., 2022, 8(1): 1–14. [Google Scholar]
  • Atopic Dermatitis Working Group, Immunology Group, Chinese Society of Dermatology. Guideline for diagnosis and treatment of atopic dermatitis in China (2020) [J]. Chinese J. Dermatology, 2020, 53(2): 81–88. [Google Scholar]
  • Chen L., Huang X., Xiao Y., et al. Prevalence and risk factors of atopic dermatitis, psoriasis, acne, and urticaria in China [J]. J. Cent. South Univ. (Medical Sci., 2020, 45(4): 449–455. [Google Scholar]
  • Silverberg J I. Public Health Burden and Epidemiology of Atopic Dermatitis [J]. Dermatol. Clin., 2017, 35(3): 283–289. [CrossRef] [Google Scholar]
  • Langan S M, Irvine A D, Weidinger S. Atopic dermatitis [J]. Lancet, 2020, 396(10247): 345–360. [CrossRef] [PubMed] [Google Scholar]
  • Czarnowicki T., He H., Krueger J G, et al. Atopic dermatitis endotypes and implications for targeted therapeutics[J]. J. Allergy Clin. Immunol., 2019, 143(1): 1–11. [CrossRef] [Google Scholar]
  • Zhao C., Qin M., Jin L., et al. Significance of Exhaled Nitric Oxide and Carbon Monoxide in Auxiliary Diagnosis and Evaluation of Allergic Rhinitis[J]. Mediators Inflamm. 2022. [Google Scholar]
  • Dou J., Yang R., Jin X., et al. Nitric oxide-releasing polyurethane/S-nitrosated keratin mats for accelerating wound healing[J]. Regen. Biomater., 2022, 9(February): 0-8. [Google Scholar]
  • Broccardo C J, Mahaffey S., Schwarz J., et al. Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization[J]. J. Allergy Clin. Immunol., 2011, 127(1): 186–193.e11. [CrossRef] [Google Scholar]
  • Upadhyay P R, Seminario-Vidal L., Abe B., et al. Cytokines and Epidermal Lipid Abnormalities in Atopic Dermatitis: A Systematic Review[J]. Cells, 2023, 12(24). [Google Scholar]
  • Abeyakirthi S., Mowbray M., Bredenkamp N., et al. Arginase is overactive in psoriatic skin[J]. Br. J. Dermatol., 2010, 163(1): 193–196. [CrossRef] [Google Scholar]
  • Huang K., Yang T., Xu J., et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. Lancet, 2019, 394(10196): 407–418. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh A., Yang C X, Al-Fouadi M., et al. The contribution of reticular basement membrane proteins to basal airway epithelial attachment, spreading and barrier formation: implications for airway remodeling in asthma[J]. Front. Med., 2023, 10(September): 1-10. [CrossRef] [Google Scholar]
  • Britt R D, Ruwanpathirana A., Ford M L, et al. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma[J]. Int. J. Mol. Sci., 2023, 24(13). [Google Scholar]
  • Hsieh A., Assadinia N., Hackett T L. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes[J]. Front. Physiol., 2023, 14(January): 1-17. [Google Scholar]
  • Asosingh K., Lauruschkat C D, Alemagno M., et al. Arginine metabolic control of airway inflammation[J]. JCI Insight, 2020, 5(2). [CrossRef] [PubMed] [Google Scholar]
  • Initiative G., Strategy G., Management A., et al. Interpretation of the 2022 Global strategy for the management and prevention of asthma [J]. 2022: 4355-4362. [Google Scholar]
  • Xin Z., Nanshan Z. Bronchial asthma prevention guide (2020 edition) [J]. 2020, 43(12): 1023–1048. [Google Scholar]
  • McDowell R., Heaney L., Brown T., et al. An examination of factorial invariance of the Asthma Control Questionnaire among adults with severe asthma[J]. PLoS One, 2023, 18(12 December 2023): 1-17. [Google Scholar]
  • Louis R., Satia I., Ojanguren I., et al. European Respiratory Society guidelines for the diagnosis of asthma in adults[J]. Eur. Respir. J., 2022, 60(3). [Google Scholar]
  • Al-Koussa H., El Mais N., Maalouf H., et al. Arginine deprivation: A potential therapeutic for cancer cell metastasis? A review[J]. Cancer Cell Int., 2020, 20(1): 1–7. [CrossRef] [Google Scholar]
  • Domvri K., Porpodis K. Targeting inflammation or remodeling in asthma? Is there a right way?[J]. Front. Med., 2023, 10(5): 5–8. [CrossRef] [Google Scholar]
  • Scaparrotta A., Franzago M., Marcovecchio M L, et al. Role of THRB, ARG1, and ADRB2 Genetic Variants on Bronchodilators Response in Asthmatic Children[J]. J. Aerosol Med. Pulm. Drug Deliv., 2019, 32(3): 164–173. [CrossRef] [PubMed] [Google Scholar]
  • Ranjbar M., Whetstone C E, Omer H., et al. The Genetic Factors of the Airway Epithelium Associated with the Pathology of Asthma[J]. Genes (Basel)., 2022, 13(10). https://doi.org/10.3390/genes13101870. [CrossRef] [Google Scholar]
  • Sharma R., Wang A L, Wong R., et al. Circulating MicroRNAs associated with Bronchodilator Response in Childhood Asthma[J]. 2023: 1-18. [Google Scholar]
  • Van den Berg M P M, Kurhade S H, Maarsingh H., et al. Pharmacological screening identifies SHK242 and SHK277 as novel arginase inhibitors with efficacy against allergen-induced airway narrowing in vitro and in Vivo[J]. J. Pharmacol. Exp. Ther., 2020, 374(1): 62–73. [CrossRef] [PubMed] [Google Scholar]
  • Bratt J M, Zeki A A, Last J A, et al. Competitive metabolism of L -arginine: Arginase as a therapeutic target in asthma[J]. J. Biomed. Res., 2011, 25(5): 299–308. [CrossRef] [Google Scholar]
  • Liao S Y, Showalter M R, Linderholm A L, et al. L- Arginine supplementation in severe asthma[J]. JCI Insight, 2020, 5(13): 0–14. [PubMed] [Google Scholar]
  • Xu W., Ghosh S., Comhair S A A, et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma [J]. J. Clin. Invest., 2016, 126(7): 2465–2481. [CrossRef] [PubMed] [Google Scholar]
  • Holguin F., Grasemann H., Sharma S., et al. L- Citrulline increases nitric oxide and improves control in obeseasthmatics [J]. JCIInsight, 2019, 4(24). [Google Scholar]
  • Brożek J L, Bousquet J., Agache I., et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision[J]. J. Allergy Clin. Immunol., 2017, 140(4): 950–958. [CrossRef] [Google Scholar]
  • Namysłowski A., Lipiec A., Zieliński W., et al. The importance of specific IgE antibodies in the epidemiology of allergic rhinitis and asthma (ECAP survey): part five. The relationship between the concentration of specific IgE antibodies in serum and types of rhinitis[J]. Postep. Dermatologii i Alergol., 2023, 40(5): 617–624. [CrossRef] [PubMed] [Google Scholar]
  • Eguiluz-Gracia I., Mathioudakis A G, Bartel S., et al. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma[J]. Allergy Eur. J. Allergy Clin. Immunol., 2020, 75(9): 2170–2184. [CrossRef] [PubMed] [Google Scholar]
  • Okubo K., Kurono Y., Ichimura K., et al. Japanese guidelines for allergic rhinitis 2020[J]. Allergol. Int., 2020, 69(3): 331–345. [CrossRef] [Google Scholar]
  • Ünal M., Eskandari H G, Erçetin N., et al. Serum nitrite/nitrate and arginase levels in patients with allergic rhinitis[J]. Orl, 2007, 69(2): 113–115. [CrossRef] [PubMed] [Google Scholar]
  • Cho W S, Kim T H, Kim K H, et al. Increased expression of arginase i and II in allergic nasal mucosa[J]. Laryngoscope, 2011, 121(2): 236–240. [CrossRef] [PubMed] [Google Scholar]
  • Yasar H., Kiran B., Cagatay T., et al. The effect of montelukast sodium on serum arginase levels in patients with seasonal allergic rhinitis[J]. Am. J. Rhinol. Allergy, 2011, 25(4): 153–155. [Google Scholar]
  • Koukou Z., Papadopoulou E., Panteris E., et al. The Effect of Breastfeeding on Food Allergies in Newborns and Infants[J]. Children, 2023, 10(6): 1–11. [Google Scholar]
  • Lopes J P, Sicherer S. Food allergy: epidemiology, pathogenesis, diagnosis, prevention, and treatment[J]. Curr. Opin. Immunol., 2020, 66(Dc): 57-64. [CrossRef] [Google Scholar]
  • Sicherer S H, Sampson H A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment[J]. J. Allergy Clin. Immunol., 2014, 133(2): 291–307.e5. [CrossRef] [Google Scholar]
  • Gupta R S, Warren C M, Smith B M, et al. Prevalence and Severity of Food Allergies Among US Adults [J]. JAMA Netw. open, 2019, 2(1): e185630. [CrossRef] [Google Scholar]
  • Li Ying Qiao, Lin Xiao-He, Lin Cheng-Lin et al. Analysis and prevention of allergen in children in Guangxi area [J]. Chinese Maternal and Child Health Research, 2023, 34(07):10–19. [Google Scholar]
  • Renz H., Allen K J, Sicherer S H, et al. Food allergy[J]. Nat. Rev. Dis. Prim., 2018, 4. [Google Scholar]
  • Host A., Halken S. Cow’s Milk Allergy: Where have we Come from and where are we Going? [J]. Endocrine, Metab. Immune Disord. Targets, 2014, 14(1): 2–8. [CrossRef] [Google Scholar]
  • Mcgaha T L, Huang L., Lemos H., et al. Amino acid catabolism: A pivotal regulator of innate and adaptive immunity [J]. Immunol. Rev., 2012, 249(1): 135–157. [CrossRef] [PubMed] [Google Scholar]
  • Lee W S, Lee S M, Kim M K, et al. The tryptophan metabolite 3-hydroxyanthranilic acid suppresses T cell responses by inhibiting dendritic cell activation[J]. Int. Immunopharmacol., 2013, 17(3): 721–726. [CrossRef] [Google Scholar]
  • Mondanelli G., Bianchi R., Pallotta M T, et al. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells [J]. Immunity, 2017, 46(2): 233–244. [CrossRef] [Google Scholar]
  • Lechowski S., Feilhauer K., Staib L., et al. Combined arginine and glutamine decrease release of de novo synthesized leukotrienes and expression of proinflammatory cytokines in activated human intestinal mast cells[J]. Eur. J. Nutr., 2013, 52(2): 505–512. [CrossRef] [PubMed] [Google Scholar]
  • Chau J Y, Tiffany C M, Nimishakavi S., et al. Malaria-associated l-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal salmonella bacteremia [J]. Infect. Immun., 2013, 81(10): 3515–3526. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.