Open Access
Issue
BIO Web Conf.
Volume 113, 2024
XVII International Scientific and Practical Conference “State and Development Prospects of Agribusiness” (INTERAGROMASH 2024)
Article Number 06021
Number of page(s) 13
Section Hygiene, Ecology and Human Health
DOI https://doi.org/10.1051/bioconf/202411306021
Published online 18 June 2024
  • Malthus, Th. (1798). An essay of the principle of population. London: J. Johnson, 249. [Google Scholar]
  • Lee, R.(1978). Econometric Studies of Topics in Demographic History. N. Y.: Arno Press. [Google Scholar]
  • Schofield, R. S. (1986). Through a Glass Darkly: The Population History of England as an Experiment in History// Population and History. From the Traditional to the Modern World / R. Rotberg, T. Rabb (eds.). Cambridge: Cambridge University P. 11–34. [Google Scholar]
  • Nefedov, S. A. (2012). Economic laws of history. Economic issues, 11, 118–134. [Google Scholar]
  • Nefedov, S. A. (2004). A Model of Demographic Cycles in Traditional Societies: The Case of Ancient China. Social Evolution & History, 3(1), 69–80. [Google Scholar]
  • Verhulst, P.F. (1838). Notice sur la loi que la population suit dans son accroissement. Corr. Math. Et Phys, 10, 113‒121. [Google Scholar]
  • Arnold, D. (2002). Fitting a Logistic Curve to Data. College of the Redwoods, working material, http://online.redwoods.cc.ca.us/instruct/darnold [Google Scholar]
  • Cavallini, F. (1993). Fitting a Logistic Curve to Data. The College Mathematics Journal, 24 (3), 247—253. [CrossRef] [Google Scholar]
  • Ivanov, I.F. (2008). Using the logistic curve to estimate the value of a company in an emerging market. Corporate Finance, 1(5), 47–62. [Google Scholar]
  • Riznichenko, G.Yu., Rubin A.B. (1993). Mathematical models of biological production processes. Moscow: MSU, 302. [Google Scholar]
  • Foerster von, H., P. Mora, and L. Amiot. (1960). Doomsday: Friday, 13 November, A.D. 2026. Science, 132, 1291–1295. [Google Scholar]
  • Kapitsa, S.P. (1992). Mathematical model of world population growth. Mathematical modeling, 4 (6), 65–79. [Google Scholar]
  • Kapitsa, S.P. (1999). How many people lived, live and will live on the earth. Moscow: Science, 136. [Google Scholar]
  • Kapitsa, S.P. (2010). To the theory of population growth of the Earth. UFN, 180(12), 1337–1346. [CrossRef] [Google Scholar]
  • Korotaev, A. V. (2008). Mathematical models of socio-demographic cycles and out of the "Malthusian trap": some possible directions for further development. Problems of mathematical history: Mathematical modeling of historical processes. Ed. G. G. Malinetsky, M .: LIBROKOM / URSS, 78–118. [Google Scholar]
  • Kashchenko, M.P., Kashchenko, N.M. (2017). Communication spheres and population growth rate. Eco-potential, 4 (20), 112–119. [Google Scholar]
  • Kashchenko, M.P., & Kashchenko, N.M. (2017). Estimates of the population of the Earth in phenomenological models with two parameters, Eco-potential. 4 (20). P.120–129. [Google Scholar]
  • Kashchenko MP, Kashchenko N.M. Reducing transition and forecast of the Earth’s population in models that take into account resource constraints // Eco-potential. 2017. 4(20), 130–136. [Google Scholar]
  • United Nations, Department of Economic and Social Affairs, Population Division (2017). World Population Prospects: The 2017 Revision, Methodology of the United Nations Population Estimates and Projections, Working Paper No. ESA/P/WP.250. New York: United Nations. [Google Scholar]
  • Forrester, J.W. (1971). World Dynamics. Cambridge, MA: Wright-Allen Press, 142. [Google Scholar]
  • Meadows D., Randers Y., Meadows D. (2007). The limits of growth. 30 years later. Translated from English M .: ICC "Akademkniga", 342. [Google Scholar]
  • V.G. Gorshkov. (1995). Physical and biological bases of stability of life. Moscow, VINITI, 470. [Google Scholar]
  • Kremer, M. Population Growth and Technological Change: One Million B.C. to 1990. The Quarterly Journal of Economics 108: 681–716. 1993. [CrossRef] [Google Scholar]
  • Podlazov, A.V. (2004). Theory of the Global Demographic Process. Proceedings of the international conference “Mathematical Modeling of Social and Economical Dynamics”, Moscow. [Google Scholar]
  • Tuganov, V.F. (2012). Physics in related sciences: self-consistent “field” of investments and Heinz von Förster’s “doomsday”. All-Russian Conference on Problems of Particle Physics, Plasma and Condensed Matter Physics, and Optoelectronics, May 15-18, 2012 100th anniversary of prof. Y. P. Terletsky. M :. PFUR, 300–303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.