Open Access
Issue
BIO Web Conf.
Volume 114, 2024
International Conference on Agricultural, Biodiversity and Environmental Economics (ICABEE 2024)
Article Number 01005
Number of page(s) 11
DOI https://doi.org/10.1051/bioconf/202411401005
Published online 20 June 2024
  • Petrova, M., Popova, P., Popov, V., Shishmanov, K., & Marinova, K. (2022). Digital ecosystem: Nature, types and opportunities for value creation. In Communications in Computer and Information Science (pp. 71–85). Springer International Publishing. https://doi.org/10.1007/978-3-031-14985-6_5 [CrossRef] [Google Scholar]
  • P. Popova, V. Popov, K. Marinova and M. Petrova. (2023). The Role of Digital Platforms and Big Data Analytics as a Base for Digital Service Innovation. 2023 4th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), Plovdiv, Bulgaria, 2023, pp. 1–8, https://doi.org/10.1109/CIEES58940.2023.10378780 [Google Scholar]
  • Petrova, M., Popova, P., Popov, V., Shishmanov, K., Marinova, K. (2022). Potential of Big Data Analytics for Managing Value Creation. 2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES), 2022, pp. 1–6, https://doi.org/10.1109/CIEES55704.2022.9990882 [Google Scholar]
  • Petrova, M., Sushchenko, O., Trunina, I., Dekhtyar, N. (2018). Big Data Tools in Processing Information from Open Sources. IEEE First International Conference on System Analysis & Intelligent Computing (SAIC-2018) Kyiv, Ukraine 08-12 October 2018, pp.256–260. https://doi.org/10.1109/SAIC.2018.8516-800 [Google Scholar]
  • Di Virgilio, F.; Dimitrov, R., Dorokhova, L.; Yermolenko, O.; Dorokhov, O., Petrova, M. (2023). Innovation factors for high and middle-income countries in the innovation management context. Access to science, business, innovation in the digital economy, ACCESS Press, 4(3), 434–452. https://doi.org/10.46656/access.2023.4.3(8) [CrossRef] [Google Scholar]
  • Azimov, D., & Petrova, M. (2022). Determination of The Efficiency of Implementing Blockchain Technology into the Logistics Systems. Busuness Management, 4, 52–67. [Google Scholar]
  • Afonina E.V. (2018). Prospects for the implementation of the concept "Industry 4.0" in the domestic industry. Drucker Bulletin, (1), 173–182. [Google Scholar]
  • van Evert, F. K., Fountas, S., Jakovetic, D., Crnojevic, V., Travlos, I., & Kempenaar, C. (2017). Big Data for weed control and crop protection. Weed Research, 57(4), 218–233. https://doi.org/10.1111/wre.12255 [CrossRef] [Google Scholar]
  • Serazetdinova L., Garratt J., Baylis A., Stergiadis S., Collison M., & Davis S. (2019). How should we turn data into decisions in AgriFood? Journal of the science of food and agriculture, 99(7), 3213–3219. [CrossRef] [PubMed] [Google Scholar]
  • Azimov, D. (2021). Analysis of the international experience of implementing blockchain technology. Access to science, business, innovation in digital economy, ACCESS Press, 2(2), 138–149. https://doi.org/10.46656/access.2021.2.2(2) [CrossRef] [Google Scholar]
  • Odinokova, T., Akhmedyarov, Ye. (2022). Development of innovation activity research model and its implementation. Access to science, business, innovation in digital economy, ACCESS Press, 3(1), 29–42. https://doi.org/10.46656/access.2022.3.1(3) [Google Scholar]
  • Skalozub, V., Horiachkin, V., Klymenko, I. (2022). Models and intellectual technologies used for analysis and process management under uncertainty. Access to science, business, innovation in digital economy, ACCESS Press, 3(2), 185–200. https://doi.org/10.46656/access.2022.3.2(8) [Google Scholar]
  • Bounit, A.; Bounit, H. (2023). New green economy policy integrating the economic dimension in the face of environmental problems in the case of a Moroccan agri-food company. Access to science, business, innovation in digital economy, ACCESS Press, 4(2), 194–204. https://doi.org/10.46656/access.2023.4.2(4) [CrossRef] [Google Scholar]
  • Pentus, K. (2023). A systematic review of food product conjoint analysis research. Access to science, business, innovation in the digital economy, ACCESS Press, 4(3), 480–502. https://doi.org/10.46656/access.2023.4.3(11) [CrossRef] [Google Scholar]
  • Gryshova, I., Balian, A., Antonik, I., Miniailo, V., Nehodenko, V., & Nyzhnychenko, Y. (2024). Artificial intelligence in climate smart in agricultural: toward a sustainable farming future. Access to science, business, innovation in the digital economy, ACCESS Press, 5(1), 125–140. https://doi.org/10.46656/access.2024.5.1(8) [CrossRef] [Google Scholar]
  • Dorokhova, L., Nencheva, I., Dorokhov, O., Yermolenko, O., & Penev, N. (2024). Consumer behavior modeling of “smart” scales choosing. Access to science, business, innovation in the digital economy, ACCESS Press, 5(1), 141–162. https://doi.org/10.46656/access.2024.5.1(9) [CrossRef] [Google Scholar]
  • Martynenko, E.V. (2015). Problems of using new information technologies in agricultural enterprise management. Novye tekhnologii, (3), 50 [Google Scholar]
  • 18. Saiz-Rubio V, & Rovira-Más F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy., 10(2), 207. https://doi.org/10.3390/agronomy10020207 [CrossRef] [Google Scholar]
  • Bestaeva N.V., Sultangalieva Dj.K., & Zubova A.D. (2018). Issledovanie system monitoring v selskohozyaystvennoy sphere. Scientific result. Information technology, 3(1), 19–24. [Google Scholar]
  • Mirzaliev, S. M., Homidov, H. H., Sharipov, K. A., & Kholikova, N. A. (2022). Perspectives of use of agricultural drones in Uzbekistan. IOP Conference Series. Earth and Environmental Science, 1045(1), 012147. https://doi.org/10.1088/1755-1315/1045/1/012147 [CrossRef] [Google Scholar]
  • Simdyankin A.A., Borychev S.N., Uspensky I.A., Kashirin D.E., & Yukhin I.A. (2022). Povyshenie energoeffektivnosti dronev v selskohozyaystvennom proizvodstve. Izvestiya NV AUK, 1 (65). [Google Scholar]
  • Gazieva R., & Yunusova S. (2019). Automation and management of agricultural production processes. Study guide. T.: TIQXMMI. [Google Scholar]
  • Gulyamov S.S. Actions in the implementation of artificial intelligence technologies in the statistical analysis of agricultural efficiency. II international scientificpractical conference on industrial economics and management: problems and solutions, pp. 11–14 [Google Scholar]
  • Pardee, G., Beddow, J.M., Hurley, T.M., Timothy K.M. Beattie and Vernon, R. Eidman, (2014). A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050. Australian Journal of Agricultural and Resource Economics, 58, 571–589. [CrossRef] [Google Scholar]
  • Cohen, R., & Schultz, T. W. (1946). Agriculture in an Unstable Economy. Economic Journal (London, England), 56(222), 302. https://doi.org/10.2307/2225808 [Google Scholar]
  • Kitonsa, H., Ural Federal University, Kruglikov, S. V., & Ural Federal University. (2018). Significance of drone technology for achievement of the United Nations sustainable development goals. R-Economy, 4(3), 115–120. https://doi.org/10.15826/recon.2018.4.3.016 [CrossRef] [Google Scholar]
  • Eshov, M., Vafoev, B., & Homidov, H. (2022). A modern approach to the digitization of agricultural activities. AIP Conf. Proc. 16 June 2022; 2432 (1): 060019. https://doi.org/10.1063/5.0090408. [CrossRef] [Google Scholar]
  • INTELLIAS. (2023). AI in Agriculture — The Future of Farming. https://intellias.com [Google Scholar]
  • President of Uzbekistan. (2022). On the Development Strategy of New Uzbekistan for 2022-2026. [Google Scholar]
  • Koval, V., Neboha, T., & Nesenenko, P. (2021). Institutional provision of infocommunication sphere development in the conditions of digitalization of national economy. Economics Ecology Socium, 5(2), 18–29. https://doi.org/10.31520/2616-7107/2021.5.2-3 [CrossRef] [Google Scholar]
  • Homidov H.H., & Maxmudov A.Sh. (2022). Artificial in statistical analysis of agricultural productivity actions in the introduction of intelligence technologies. In International Scientific and Technical Conference “Digital Technologies: Problems and Solutions for Practical Implementation in an Industry”, pp. 193–197. [Google Scholar]
  • Demianchuk, M., Koval, V., Hordopolov, V., Kozlovtseva, V., and Atstaja, D. (2021). Ensuring sustainable development of enterprises in the conditions of digital transformations. E3S Web of Conferences, 280, 02002. https://doi.org/10.1051/e3sconf/202128002002 [CrossRef] [EDP Sciences] [Google Scholar]
  • Burak, P., Khadzhynova, O., Gonchar, V., & Kalinin, O. (2019). Mechanisms of Investment Marketing Support of the State Economic Security System. Intellectual Economics, 13(2), 161–171. [Google Scholar]
  • Kaminsky, O., Koval, V., Yereshko, J., Vdovenko, N., Bocharov, M., & Kazancoglu, Y. (2023). Evaluating the effectiveness of enterprises’ digital transformation by fuzzy logic. In Advances in Soft Computing Applications (pp. 75–90). River. [Google Scholar]
  • Gonchar, V., Kalinin, O., Khadzhynova, O., & McCarthy, K. (2022). False friends? On the effect of bureaucracy, informality, corruption and conflict in Ukraine on foreign and domestic acquisitions. Journal of Risk and Financial Management, 15(4), 179. https://doi.org/10.3390/jrfm15040179 [CrossRef] [Google Scholar]
  • Mottaeva A., Khussainova Z., Gordeyeva Y. (2023). Impact of the digital economy on the development of economic systems. E3S Web of Conferences, 2023, 381, 02011. https://doi.org/10.1051/e3sconf/202338102011 [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhartay, Z.; Khussainova, Z.; Abauova, G.; Amanzholova, B. (2017). Prospects of development of silk road economic belt and new opportunities of economic growth. Journal of Advanced Research in Law and Economics. 2017, 8(8), 2636–2643. https://doi.org/10.14505//jarle.v8.8(30).35 [Google Scholar]
  • Yessengeldin, B.; Khussainova, Z.; Kurmanova, A.; Syzdykova, D.; Zhanseitov, A. (2019). Exploitation of natural resources in Kazakhstan: Judicial practice for foreign investment. Journal of East Asia and International Law. 2019, 12 (1), 169–179. https://doi.org/10.14330/jeail.2019.12.1.09 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.