Open Access
Issue |
BIO Web Conf.
Volume 114, 2024
International Conference on Agricultural, Biodiversity and Environmental Economics (ICABEE 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/bioconf/202411401021 | |
Published online | 20 June 2024 |
- Kozul, C.D., Nomikos, A.P., Hampton, T.H., Warnke, L.A., Gosse, J.A. (2008). Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung. Chemico-biological interactions, 173(2), 129–140. https://doi.org/10.1016/j.cbi.2008.02.008 [CrossRef] [PubMed] [Google Scholar]
- Rao, G.N., Knapka, J.J. (1987). Contaminant and nutrient concentrations of natural ingredient rat and mouse diet used in chemical toxicology studies. Fundamental and Applied Toxicology, 9(2), 329–338. https://doi.org/10.1016/0272-0590(87)90055-8 [CrossRef] [PubMed] [Google Scholar]
- Keenan, K. P., Laroque, P., Ballam, G. C., Soper, K. A., Dixit, R., Mattson, B. A., … & Coleman, J. B. (1996). The effects of diet, ad libitum overfeeding, and moderate dietary restriction on the rodent bioassay: the uncontrolled variable in safety assessment. Toxicologic pathology, 24(6), 757–768. https://doi.org/10.1177/019262339602400620 [CrossRef] [PubMed] [Google Scholar]
- Nishikimi, M., Kawai, T., Yagi, K. (1992). Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. Journal of Biological Chemistry, 267(30), 21967–21972. https://doi.org/10.1016/S0021-9258(19)36707-9 [CrossRef] [Google Scholar]
- Milton K. (2003). Micronutrient intakes of wild primates: are humans different? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136(1), 47–59. https://doi.org/10.1016/S1095-6433(03)00084-9 [CrossRef] [Google Scholar]
- Jenness, R., Birney, E.C., Ayaz, K.L. (1980). Variation of L-gulonolactone oxidase activity in placental mammals. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 67(2), 195–204. https://doi.org/10.1016/0305-0491(80)90131-5 [CrossRef] [Google Scholar]
- Garg, M.R., Sherasia, P.L., Bhanderi, B.M., Phondba, B.T., Shelke, S.K., Makkar, H.P.S. (2013). Effects of feeding nutritionally balanced rations on animal productivity, feed conversion efficiency, feed nitrogen use efficiency, rumen microbial protein supply, parasitic load, immunity and enteric methane emissions of milking animals under field conditions. Animal Feed Science and Technology, 179(1-4), 24–35. https://doi.org/10.1016/j.anifeedsci.2012.11.005 [Google Scholar]
- Deen, A.U., Tyagi, N., Yadav, R.D., Kumar, S. (2019). Feeding balanced ration can improve the productivity and economics of milk production in dairy cattle: a comprehensive field study. Tropical animal health and production, 51, 737–744. https://doi.org/10.1007/s11250-018-1747-8 [CrossRef] [PubMed] [Google Scholar]
- Hart, R. W., Keenan, K., Turturro, A., Abdo, K. M., Leakey, J., & Lyn-Cook, B. (1995). Caloric restriction and toxicity. Toxicological Sciences, 25(2), 184–195. https://doi.org/10.1093/toxsci/25.2.184 [CrossRef] [Google Scholar]
- Roe, F. J. C. (1994). Historical histopathological control data for laboratory rodents: valuable treasure or worthless trash? Laboratory animals, 28(2), 148–154. https://doi.org/10.1258/002367794780745236 [CrossRef] [PubMed] [Google Scholar]
- Roe, F. J. C., Lee, P. N., Conybeare, G., Kelly, D., Matter, B., Prentice, D., & Tobin, G. (1995). The Biosure Study: influence of composition of diet and food consumption on longevity, degenerative diseases and neoplasia in Wistar rats studied for up to 30 months post weaning. Food and Chemical Toxicology, 33, S1–S100. https://doi.org/10.1016/0278-6915(95)80200-2 [CrossRef] [Google Scholar]
- Rogers, A. E., Zeisel, S. H., & Groopman, J. (1993). Diet and carcinogenesis. Carcinogenesis, 14(11), 2205–2217. https://doi.org/10.1093/carcin/14.11.2205 [CrossRef] [PubMed] [Google Scholar]
- Sijbesma, J. W. A., van Waarde, A., Klooster, A., Kion, I., Slart, R. H. J. A., Lammertsma, A. A., … & Bakker, S. J. L. (2024). Caloric restriction reduces proteinuria in male rats with established nephropathy. Physiological reports, 12(5), e15942. https://doi.org/10.14814/phy2.15942 [CrossRef] [PubMed] [Google Scholar]
- Lei, X., Ishida, E., Yoshino, S., Matsumoto, S., Horiguchi, K., & Yamada, E. (2024). Calorie Restriction Using High-Fat/Low-Carbohydrate Diet Suppresses Liver Fat Accumulation and Pancreatic Beta-Cell Dedifferentiation in Obese Diabetic Mice. Nutrients, 16(7), 995. https://doi.org/10.3390/nu16070995 [Google Scholar]
- Meulders, B., Marei, W. F., Xhonneux, I., Loier, L., Smits, A., & Leroy, J. L. (2024). Preconception Diet Interventions in Obese Outbred Mice and the Impact on Female Offspring Metabolic Health and Oocyte Quality. International journal of molecular sciences, 25(4), 2236. https://doi.org/10.3390/ijms25042236 [CrossRef] [PubMed] [Google Scholar]
- Zhang, H., Zhang, X., Wang, Y., Zhao, X., Zhang, L., Li, J., … & Liang, H. (2023). Dietary Folic Acid Supplementation Attenuates Maternal High-Fat Diet-Induced Fetal Intrauterine Growth Retarded via Ameliorating Placental Inflammation and Oxidative Stress in Rats. Nutrients, 15(14), 3263. https://doi.org/10.3390/nu15143263 [Google Scholar]
- An, J. M., Kang, E. A., Han, Y. M., Kim, Y. S., Hong, Y. G., Hah, B. S., … & Hahm, K. B. (2019). Dietary threonine prevented stress-related mucosal diseases in rats. J. Physiol. Pharmacol, 70(3). https://doi.org/10.26402/jpp.2019.3.14 [Google Scholar]
- Zou, X. Z., Zhang, Y. W., Pan, Z. F., Hu, X. P., Xu, Y. N., Huang, Z. J., … & Liu, T. (2022). Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. Phytomedicine, 106, 154389. https://doi.org/10.1016/j.phymed.2022.154389 [CrossRef] [PubMed] [Google Scholar]
- Swindell, W. R. (2012). Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing research reviews, 11(2), 254–270. https://doi.org/10.1016/j.arr.2011.12.006 [CrossRef] [PubMed] [Google Scholar]
- Yu, B. P., Masoro, E. J., Murata, I., Bertrand, H. A., & Lynd, F. T. (2002). Life-span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. Science of Aging Knowledge Environment, 2002(37), cp18–cp18. https://doi.org/10.1126/sageke.2002.37.cp18 [CrossRef] [Google Scholar]
- Hubert, M. F., Laroque, P., Gillet, J. P., & Keenan, K. P. (2000). The effects of diet, ad libitum feeding, and moderate and severe dietary restriction on body weight, survival, clinical pathology parameters, and cause of death in control Sprague-Dawley rats. Toxicological Sciences, 58(1), 195–207. https://doi.org/10.1093/toxsci/58.1.195 [CrossRef] [PubMed] [Google Scholar]
- Chassaing, B., Miles-Brown, J., Pellizzon, M., Ulman, E., Ricci, M. (2015). Lack of soluble fiber drives diet-induced adiposity in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309(7), G528–G541. https://doi.org/10.1152/ajpgi.00172.2015 [CrossRef] [PubMed] [Google Scholar]
- Douglas, T. C., Pennine, M., & Dierenfeld, E. S. (1994). Vitamins E and A, and proximate composition of whole mice and rats used as feed. Comparative Biochemistry and Physiology Part A: Physiology, 107(2), 419–424. https://doi.org/10.1016/0300-9629(94)90401-4 [CrossRef] [Google Scholar]
- Ames, S. R. (1974). Age, parity, and vitamin A supplementation and the vitamin E requirement of female rats. The American Journal of Clinical Nutrition, 27(9), 1017–1025. https://doi.org/10.1093/ajcn/27.9.1017 [CrossRef] [PubMed] [Google Scholar]
- Dryden, L. P., Hartman, A. M., & Cary, C. A. (1952). The effect of vitamin B12 deficiency upon the survival of young born to rats fed purified casein rations. The Journal of Nutrition, 46(3), 281–297. https://doi.org/10.1093/jn/46.3.281 [Google Scholar]
- McKenzie, R. M. (1964). The response of the laboratory rat to changes in the caloric density and protein: calorie ratio of its ration (Doctoral dissertation, University of British Columbia). https://doi.org/10.14288/1.0104866 [Google Scholar]
- Drabkin, D. L., & Fitz-Hugh JR, T. (1934). A comparison of the normal blood picture of rats of two different colonies reared upon different stock rations. American Journal of Physiology-Legacy Content, 108(1), 61–65. https://doi.org/10.1152/ajplegacy.1934.108.1.61 [CrossRef] [Google Scholar]
- Orten, J. M., Smith, A. H., & Mendel, L. B. (1936). Relation of Calcium and of Iron to the Erythrocyte and Hemoglobin Content of the Blood of Rats Consuming a Mineral Deficient Ration: Two Figures. The Journal of Nutrition, 12(4), 373–385. https://doi.org/10.1093/jn/12.4.373 [Google Scholar]
- Friedman, M. I., Ramirez, I. S. R. A. E. L., Edens, N.K., & Granneman, J.A.M.E.S. (1985). Food intake in diabetic rats: isolation of primary metabolic effects of fat feeding. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(1), R44–R51. https://doi.org/10.1152/ajpregu.1985.249.1.R44 [CrossRef] [Google Scholar]
- Hennig, B., & Dupont, J. (1983). Lipoprotein lipid and protein responses to dietary fat and diabetes in rats. The Journal of nutrition, 113(10), 1984–1994. https://doi.org/10.1093/jn/113.10.1984 [Google Scholar]
- Kanarek, R. B., & Ho, L. (1984). Patterns of nutrient selection in rats with streptozotocininduced diabetes. Physiology & behavior, 32(4), 639–645. https://doi.org/10.1016/0031-9384(84)90319-6 [CrossRef] [PubMed] [Google Scholar]
- Wang, Y., Wang, P. Y., Qin, L. Q., Davaasambuu, G., Kaneko, T., Xu, J., … & Sato, A. (2003). The development of diabetes mellitus in Wistar rats kept on a high-fat/lowcarbohydrate diet for long periods. Endocrine, 22, 85–92. [CrossRef] [PubMed] [Google Scholar]
- Anyakudo, M. M. C., & Adeniji, D. O. (2021). Effects of proportional high-protein/lowcarbohydrate formulated diet consumption in diabetic rats: beneficial impact on glycemic and weight control. African Journal of Food, Agriculture, Nutrition and Development, 20(7), 16984–16996. [Google Scholar]
- Cunha, L. F., Ongaratto, M. A., Endres, M., & Barschak, A. G. (2021). Modelling hypercholesterolaemia in rats using high cholesterol diet. International Journal of Experimental Pathology, 102(2), 74–79. https://doi.org/10.1111/iep.12387 [CrossRef] [PubMed] [Google Scholar]
- Surwit, R. S., Seldin, M. F., Kuhn, C. M., Cochrane, C., & Feinglos, M. N. (1991). Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes, 40(1), 82–87. https://doi.org/10.2337/diab.40.1.82 [CrossRef] [PubMed] [Google Scholar]
- West, D. B., Boozer, C. N., Moody, D. L., & Atkinson, R. L. (1992). Dietary obesity in nine inbred mouse strains. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 262(6), R1025–R1032. https://doi.org/10.1152/ajpregu.1992.262.6.R1025 [CrossRef] [Google Scholar]
- Khanuja, B., Cheah, Y. C., Hunt, M., Nishina, P. M., Wang, D. Q., Chen, H. W., … & Paigen, B. (1995). Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proceedings of the National Academy of Sciences, 92(17), 7729–7733. https://doi.org/10.1073/pnas.92.17.7729 [CrossRef] [PubMed] [Google Scholar]
- Wang, H. H., Garruti, G., Liu, M., Portincasa, P., & Wang, D. Q. (2018). Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Annals of hepatology, 16(1), 27–42. https://doi.org/10.5604/01.3001.0010.5495 [Google Scholar]
- Egan, B. M., Li, J., Qanungo, S., & Wolfman, T. E. (2013). Blood pressure and cholesterol control in hypertensive hypercholesterolemic patients: national health and nutrition examination surveys 1988-2010. Circulation, 128(1), 29–41. https://doi.org/10.1161/CIRCULATIONAHA.112.000500 [CrossRef] [PubMed] [Google Scholar]
- Rapp, J. P. (1982). Dahl salt-susceptible and salt-resistant rats. A review. Hypertension, 4(6), 753–763. https://doi.org/10.1161/01.HYP.4.6.753 [CrossRef] [PubMed] [Google Scholar]
- Dahl, L. K., Knudsen, K. D., Heine, M. A., & Leitl, G. J. (1968). Effects of chronic excess salt ingestion: modification of experimental hypertension in the rat by variations in the diet. Circulation research, 22(1), 11–18. https://doi.org/10.1161/01.RES.22.1.11 [CrossRef] [PubMed] [Google Scholar]
- Kaufman, L. N., Young, J. B., & Landsberg, L. (1986). Effect of protein on sympathetic nervous system activity in the rat. Evidence for nutrient-specific responses. The Journal of clinical investigation, 77(2), 551–558. https://doi.org/10.1172/JCI112336 [CrossRef] [PubMed] [Google Scholar]
- Lewis, S. M., Johnson, Z. J., Mayhugh, M. A., & Duffy, P. H. (2003). Nutrient intake and growth characteristics of male Sprague-Dawley rats fed AIN-93M purified diet or NIH-31 natural-ingredient diet in a chronic two-year study. Aging clinical and experimental research, 15, 460–468. https://doi.org/10.1007/BF03327368 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.