Open Access
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
Article Number 01006
Number of page(s) 12
Published online 05 July 2024
  • Fischer, F.P., R.A. Karge, Y.G. Weber, H. Koch, S. Wolking, A. Voigt: Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Front. Mol. Neurosci. 16, (2023). [CrossRef] [Google Scholar]
  • Mirzoyan, Z., M. Sollazzo, M. Allocca, A.M. Valenza, D. Grifoni, P. Bellosta: Drosophila melanogaster: A model organism to study cancer. Front. Genet. 10, (2019). [CrossRef] [Google Scholar]
  • Gonzalez, C.: Drosophila melanogaster: A model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer. 13, 172 (2013). [CrossRef] [PubMed] [Google Scholar]
  • Martin, C.A., D.E. Krantz: Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem. Int. 73, 71 (2014). [CrossRef] [Google Scholar]
  • Arbuthnott, D., E.M. Dutton, A.F. Agrawal, H.D. Rundle: The ecology of sexual conflict: Ecologically dependent parallel evolution of male harm and female resistance in Drosophila melanogaster. Ecol. Lett. 17, 221 (2014). [CrossRef] [PubMed] [Google Scholar]
  • Ong, C., L.-Y.L. Yung, Y. Cai, B.-H. Bay, G.-H. Baeg: Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology. 9, 396 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Trinder, M., B.A. Daisley, J.S. Dube, G. Reid: Drosophila melanogaster as a highthroughput model for host-microbiota interactions. Front. Microbiol. 8, (2017). [CrossRef] [Google Scholar]
  • Alaraby, M., B. Annangi, R. Marcos, A. Hernández: Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. J. Toxicol. Environ. Heal. Part B. 19, 65 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Fatmawati, D., D. Khoiroh, S. Zubaidah, H. Susanto, M. Agustin, A. Fauzi: Wing morphological changes of Drosophila melanogaster exposed with Lead in nine generations. In: AIP Conference Proceedings. AIP Publishing (2022). [Google Scholar]
  • Ugur, B., K. Chen, H.J. Bellen: Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9, 235 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Prüßing, K., A. Voigt, J.B. Schulz: Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener. 8, 35 (2013). [CrossRef] [Google Scholar]
  • Rahul, F. Naz, S. Jyoti, Y.H. Siddique: Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease. Sci. Rep. 10, (2020). [Google Scholar]
  • Fauzi, A., S. Zubaidah, H. Susanto: The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior? In: AIP Conference Proceedings. AIP Publishing, Malang (Taufiq, A., Susanto, H., Nur, H., Aziz, M., Chang, C.-R., Lee, H., Diantoro, M., Mufti, N., Malek, N.A.N.N., Wang, I.C., Iskandar, D.T., Elbers, G., Sunaryono, S., Zubaidah, S., Sumari, S., Aulanni’am, A., Nandiyanto, A.B., Wibowo, I., and Handaya, A.Y., eds.) (2020). [Google Scholar]
  • Pak, E.S., A.K. Murashov: Drosophila passive avoidance behavior as a new paradigm to study associative aversive learning. J. Vis. Exp. 2021, (2021). [Google Scholar]
  • Peppriell, A.E., J.T. Gunderson, I.N. Krout, D. Vorojeikina, M.D. Rand: Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicol. Teratol. 88, (2021). [Google Scholar]
  • Ohiomokhare, S., F. Olaolorun, A. Ladagu, F. Olopade, M.-J.R. Howes, E. Okello, J. Olopade, P.L. Chazot: The pathopharmacological interplay between vanadium and iron in parkinson’s disease models. Int. J. Mol. Sci. 21, 1 (2020). [Google Scholar]
  • Wu, Q., X. Du, X. Feng, H. Cheng, Y. Chen, C. Lu, M. Wu, H. Tong: Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. Ecotoxicol. Environ. Saf. 225, (2021). [Google Scholar]
  • Peppriell, A.E., J.T. Gunderson, D. Vorojeikina, M.D. Rand: Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology. 443, (2020). [Google Scholar]
  • Gunderson, J.T., A.E. Peppriell, I.N. Krout, D. Vorojeikina, M.D. Rand: Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicol. Sci. 184, 236 (2021). [Google Scholar]
  • Pankau, C., J. Nadolski, H. Tanner, C. Cryer, J. Di Girolamo, C. Haddad, M. Lanning, M. Miller, D. Neely, R. Wilson, B. Whittinghill, R.L. Cooper: Examining the effect of manganese on physiological processes: Invertebrate models. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 251, (2022). [Google Scholar]
  • Green, L., M. Coronado-Zamora, S. Radío, G.E. Rech, J. Salces-Ortiz, J. González: The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors. BMC Biol. 20, (2022). [CrossRef] [Google Scholar]
  • Xiao, S., L.S. Baik, X. Shang, J.R. Carlson: Meeting a threat of the Anthropocene: Taste avoidance of metal ions by Drosophila. Proc. Natl. Acad. Sci. U. S. A. 119, (2022). [Google Scholar]
  • Algarve, T.D., C.E. Assmann, T. Aigaki, I.B.M. da Cruz: Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster. Drug Chem. Toxicol. 43, 255 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Williams, M.J., L. Wiemerslage, P. Gohel, S. Kheder, L.V Kothegala, H.B. Schiöth: Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in drosophila males. Endocrinology. 157, 2309 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Zhang, W., G.R. Reeves, D. Tautz: Identification of a genetic network for an ecologically relevant behavioural phenotype in Drosophila melanogaster. Mol. Ecol. 29, 502 (2020). [CrossRef] [PubMed] [Google Scholar]
  • Narasimha, S., S. Kolly, M.B. Sokolowski, T.J. Kawecki, R.K. Vijendravarma: Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints. PLoS One. 10, e0117280 (2015). [Google Scholar]
  • Riedl, C.A.L., S. Oster, M. Busto, T.F.C. Mackay, M.B. Sokolowski: Natural variability in Drosophila larval and pupal NaCl tolerance. J. Insect Physiol. 88, 15 (2016). [CrossRef] [Google Scholar]
  • Elliott, A.D., A. Berndt, M. Houpert, S. Roy, R.L. Scott, C.C. Chow, H. Shroff, B.H. White: Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila. Elife. 10, (2021). [CrossRef] [Google Scholar]
  • Cabrita, A., A.M. Medeiros, T. Pereira, A.S. Rodrigues, M. Kranendonk, C.S. Mendes: Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience. 25, 104541 (2022). [CrossRef] [Google Scholar]
  • Khatun, S., M. Mandi, P. Rajak, S. Roy: Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster. Chemosphere. 209, 220 (2018). [CrossRef] [Google Scholar]
  • Wolfstetter, G., I. Dahlitz, K. Pfeifer, U. Töpfer, J.A. Alt, D.C. Pfeifer, R. Lakes-Harlan, S. Baumgartner, R.H. Palmer, A. Holz: Characterization of Drosophila Nidogen / entactin reveals roles in basement membrane stability, barrier function and nervous system patterning. Development. (2018). [Google Scholar]
  • Khoiroh, D., L. Hindun, D. Fatmawati, S. Zubaidah, H. Susanto, A. Fauzi: Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? In: AIP Conference Proceedings. AIP Publishing (2023). [Google Scholar]
  • Bodnaryk, R.P.: Factors affecting diapause development and survival in the pupa of mamestra configurata (lepidoptera: noctuidae). Can. Entomol. 110, 183 (1978). [CrossRef] [Google Scholar]
  • Telles-Romero, R., J. Toledo, E. Hernández, J.L. Quintero-Fong, L. Cruz-López: Effect of temperature on pupa development and sexual maturity of laboratory Anastrepha obliqua adults. Bull. Entomol. Res. 101, 565 (2011). [CrossRef] [PubMed] [Google Scholar]
  • Shi, Y., L.-Y. Li, S. Shahid, G. Smagghe, T.-X. Liu: Effect of soil moisture on pupation behavior and inhabitation of Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 56, 69 (2021). [CrossRef] [Google Scholar]
  • Meikle, W.G., R. Diaz: Factors affecting pupation success of the small hive beetle, Aethina tumida. J. Insect Sci. 12, 1 (2012). [CrossRef] [Google Scholar]
  • Zhang, D.-W., Z.-J. Xiao, B.-P. Zeng, K. Li, Y.-L. Tang: Insect behavior and physiological adaptation mechanisms under starvation stress. Front. Physiol. 10, (2019). [Google Scholar]
  • Gao, X., J. Zhang, P. Wu, R. Shu, H. Zhang, Q. Qin, Q. Meng: Conceptual framework for the insect metamorphosis from larvae to pupae by transcriptomic profiling, a case study of Helicoverpa armigera (Lepidoptera: Noctuidae). BMC Genomics. 23, 591 (2022). [CrossRef] [Google Scholar]
  • Purkayastha, D., S. Sarkar: Sustainable waste management using black soldier fly larva: a review. Int. J. Environ. Sci. Technol. 19, 12701 (2022). [CrossRef] [Google Scholar]
  • da Silva, I.F., E.L.L. Baldin, A. Specht, V.F. Roque-Specht, R. Morando, J. V. Malaquias, S. V. Paula-Moraes: Role of nutritional composition in the development and survival of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on artificial diet and natural hosts. Bull. Entomol. Res. 111, 257 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Welbergen, P., M.B. Sokolowski: Development time and pupation behavior in the Drosophila melanogaster subgroup (Diptera: Drosophilidae). J. Insect Behav. 7, 263 (1994). [CrossRef] [Google Scholar]
  • Reaume, C.J., M.B. Sokolowski: The nature of Drosophila melanogaster. Curr. Biol. 16, 623 (2006). [Google Scholar]
  • Kladt, N., M. Reiser: Drosophila antennae are dispensable for gravity orientation. 2023, p. [Google Scholar]
  • Liu, T.-X., P.A. Stansly: Pupal orientation and emergence of some Aphelinid parasitoids (Hymenoptera: Aphelinidae) of Bemisia argentifolii (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 89, 385 (1996). [CrossRef] [Google Scholar]
  • Yoda, S., E. Otaguro, M. Nobuta, H. Fujiwara: Molecular mechanisms underlying pupal protective color switch in Papilio polytes butterflies. Front. Ecol. Evol. 8, (2020). [CrossRef] [Google Scholar]
  • Machtinger, E.T., C.J. Geden, P.E. Kaufman, A.M. House: Use of pupal parasitoids as biological control agents of filth flies on equine facilities. J. Integr. Pest Manag. 6, 16 (2015). [CrossRef] [Google Scholar]
  • Greenberg, B.: Flies as forensic indicators. J. Med. Entomol. 28, 565 (1991). [CrossRef] [PubMed] [Google Scholar]
  • Han, X., B. Geller, K. Moniz, P. Das, A.K. Chippindale, V.K. Walker: Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Sci. Total Environ. 487, 822 (2014). [Google Scholar]
  • Krittika, S., A. Lenka, P. Yadav: Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biol. Open. 8, (2019). [CrossRef] [Google Scholar]
  • Coleman, J.M., K.M. Benowitz, A.G. Jost, L.M. Matzkin: Behavioral evolution accompanying host shifts in cactophilic Drosophila larvae. Ecol. Evol. 8, 6921 (2018). [CrossRef] [Google Scholar]
  • Kim, C.S., K.M. Seong, B.S. Lee, I.K. Lee, K.H. Yang, J.-Y. Kim, S.Y. Nam: Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior. J. Radiat. Res. 56, 475 (2015). [CrossRef] [PubMed] [Google Scholar]
  • Morimoto, J.: Uric acid metabolism modulates diet-dependent responses to intraspecific competition in Drosophila larvae. iScience. 25, 105598 (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.