Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/bioconf/202411701021 | |
Published online | 05 July 2024 |
- T. Nagata, A. Hosaka-Sasaki, and S. Kikuchi, The Evolutionary Diversification of Genes that Encode Transcription Factor Proteins in Plants. Elsevier Inc. (2016). http://dx.doi.org/10.1016/B978-0-12-800854-6/00005-1. [Google Scholar]
- G. Hasanaliyeva et al., Effects of production region, production systems and grape type/variety on nutritional quality parameters of table grapes; results from a UK retail survey, Foods, 9, 12 (2020). doi: 10.3390/foods9121874. [CrossRef] [PubMed] [Google Scholar]
- Y. Khan et al., Antioxidant potential in the leaves of grape varieties (Vitis vinifera L.) grown in different soil compositions, Arab. J. Chem., 14, 11, 103412 (2021), https://doi.org/10.1016/j.arabjc.2021.103412 [CrossRef] [Google Scholar]
- C. P. Lee, K. M. Lim, Y. X. Song, and A. Alqahtani, Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer, Plants, 12, 14, 1–21 (2023). doi: 10.3390/plants12142642. [Google Scholar]
- M. Faisal, J. S. Leu, and J. T. Darmawan, Model Selection of Hybrid Feature Fusion for Coffee Leaf Disease Classification, IEEE Access, 11, June 62281–62291 (2023), doi: 10.1109/ACCESS.2023.3286935. [CrossRef] [Google Scholar]
- B. Dwi Mardiana, W. Budi Utomo, U. Nur Oktaviana, G. Wasis Wicaksono, and A. Eko Minarno, Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16, J. RESTI (Rekayasa Sist. dan Teknol. Informasi), 7, 1, 20–26 (2023). doi: 10.29207/resti.v7i1.4550. [CrossRef] [Google Scholar]
- E. Elfatimi, R. Eryigit, and L. Elfatimi, Beans Leaf Diseases Classification Using MobileNet Models, IEEE Access, 10, 9471–9482 (2022). doi: 10.1109/ACCESS.2022.3142817. [CrossRef] [Google Scholar]
- K. Yang, W. Zhong, and F. Li, Leaf segmentation and classification with a complicated background using deep learning, Agronomy, 10, 11 (2020). doi: 10.3390/agronomy10111721. [Google Scholar]
- Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, Plant leaf disease classification using EfficientNet deep learning model, Ecol. Inform., 61, 101182 (2021). https://doi.org/10.1016/j.ecoinf.2020.101182 [CrossRef] [Google Scholar]
- S. Hussein, P. Kandel, C. W. Bolan, M. B. Wallace, and U. Bagci, Lung and Pancreatic Tumor Characterization in the Deep Learning Era: Novel Supervised and Unsupervised Learning Approaches, IEEE Trans. Med. Imaging, 38, 8, 1777–1787 (2019). doi: 10.1109/TMI.2019.2894349. [CrossRef] [PubMed] [Google Scholar]
- S. Roy et al., Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound, IEEE Trans. Med. Imaging, 39, 8, 2676–2687 (2020). doi: 10.1109/TMI.2020.2994459. [CrossRef] [PubMed] [Google Scholar]
- M. Sarosa, N. Muna, and E. Rohadi, Detection of natural disaster victims using You Only Look Once (YOLO), IOP Conf. Ser. Mater. Sci. Eng., 1098, 3, 032076 (2021), doi: 10.1088/1757-899x/1098/3/032076. [CrossRef] [Google Scholar]
- A. Alem and S. Kumar, Deep Learning Models Performance Evaluations for Remote Sensed Image Classification, IEEE Access, 10, October (2022). doi: 10.1109/ACCESS.2022.3215264. [Google Scholar]
- M. Sarosa, N. Muna, E. Rohadi, M. Junus, A. Setiawan, and I. Muhiqqin, Circle Hough Transform (CHT) method applied to coin identifier and recognition based on computer vision and android developer, J. Phys. Conf. Ser., 1402, 7 (2019). doi: 10.1088/1742-6596/1402/7/077036. [CrossRef] [Google Scholar]
- M. Sarosa, N. Muna, and E. Rohadi, Performance of faster r-cnn to detect plastic waste, Int. J. Adv. Trends Comput. Sci. Eng., 9, 5, 7756–7762 (2020). doi: 10.30534/ijatcse/2020/120952020. [CrossRef] [Google Scholar]
- H. Xu, X. Lv, X. Wang, Z. Ren, N. Bodla, and R. Chellappa, Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection, IEEE Trans. Pattern Anal. Mach. Intell., 43, 6, 1914–1927 (2021). doi: 10.1109/TPAMI.2019.2957780. [CrossRef] [PubMed] [Google Scholar]
- J. Chen, J. Mao, C. Thiel, and Y. Wang, iWaste: Video-Based Medical Waste Detection and Classification, 2020 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 5794–5797 (2020). doi: 10.1109/EMBC44109.2020.9175645. [Google Scholar]
- B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3, 2019 1st Int. Conf. Unmanned Veh. Syst. UVS 2019, 1, 1–6 (2019). doi: 10.1109/UVS.2019.8658300. [Google Scholar]
- K. bing Chen, Y. Xuan, A. jun Lin, and S. hua Guo, Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN, Comput. Methods Programs Biomed., 207, 106172 (2021). https://doi.org/10.1016/j.cmpb.2021.106172 [CrossRef] [Google Scholar]
- H. Yuan, Y. Shao, Z. Liu, and H. Wang, An Improved Faster R-CNN for Pulmonary Embolism Detection from CTPA Images, IEEE Access, 9, 105382–105392 (2021), doi: 10.1109/ACCESS.2021.3099479. [CrossRef] [Google Scholar]
- Z. Li et al., A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN, Comput. Electron. Agric., 182, February (2021), doi: 10.1016/j.compag.2021.106054. [Google Scholar]
- V. Sharma and R. N. Mir, Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition, J. King Saud Univ.-Comput. Inf. Sci., 34, 5, 1687–1699 (2022). https://doi.org/10.1016/j.jksuci.2019.09.012 [Google Scholar]
- Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects, IEEE Trans. neural networks Learn. Syst., 33, 12, 6999–7019 (2022). doi: 10.1109/TNNLS.2021.3084827. [CrossRef] [PubMed] [Google Scholar]
- L. Fan, T. Zhang, and W. Du, Optical-flow-based framework to boost video object detection performance with object enhancement, Expert Syst. Appl., 170, December 114544 (2021). https://doi.org/10.1016/j.eswa.2020.114544 [CrossRef] [Google Scholar]
- A. Ajit, K. Acharya, and A. Samanta, A Review of Convolutional Neural Networks, Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, 1–5 (2020). doi: 10.1109/ic-ETITE47903.2020.049. [Google Scholar]
- A. S. B. Reddy and D. S. Juliet, Transfer learning with RESNET-50 for malaria cellimage classification, Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019, 945–949 (2019). doi: 10.1109/ICCSP.2019.8697909. [Google Scholar]
- M. Sankupellay and D. Konovalov, Bird call recognition using deep convolutional neural network, ResNet-50, Aust. Acoust. Soc. Annu. Conf. AAS 2018, October 200–207 (2019). doi: 10.13140/RG.2.2.31865.31847. [Google Scholar]
- Y. P. Chen, Y. Li, and G. Wang, An enhanced region proposal network for object detection using deep learning method, PLoS One, 13, 9, 1–26 (2018). doi: 10.1371/journal.pone.0203897. [Google Scholar]
- W. Gu et al., High Accuracy Thyroid Tumor Image Recognition Based on Hybrid Multiple Models Optimization, IEEE Access, 8, 128426–128439 (2020). doi: 10.1109/ACCESS.2020.3008401. [CrossRef] [Google Scholar]
- N. A. Prasetyo, Pranowo, and A.J. Santoso, Automatic detection and calculation of palm oil fresh fruit bunches using faster R-CNN, Int. J. Appl. Sci. Eng., 17, 2, 121–134 (2020). doi: 10.6703/IJASE.202005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.