Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/202411701020 | |
Published online | 05 July 2024 |
- I. Manisalidis, E. Stavropoulou, A. Stavropoulos, & E. Bezirtzoglou, Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8 (2020). https://doi.org/10.3389/fpubh.2020.00014 [CrossRef] [Google Scholar]
- A. L. Wani, A. Ara, & J. A. Usmani, Lead toxicity: A review. Interdisciplinary toxicology, 8 (2015) 55–64. https://doi.org/10.1515/intox-2015-0009 [CrossRef] [PubMed] [Google Scholar]
- M. M. Onakpa, A. A. Njan, & O. C. Kalu, A review of heavy metal contamination of food crops in Nigeria. Annals of global health, 84 (2018) 488–494. https://doi.org/10.29024/aogh.2314 [CrossRef] [PubMed] [Google Scholar]
- J. J. Clark & A. C. Knudsen, Extent, characterization, and sources of soil lead contamination in small-urban residential neighborhoods. Journal of Environmental Quality, 42 (2013) 1498–1506. https://doi.org/10.2134/jeq2013.03.0100 [CrossRef] [PubMed] [Google Scholar]
- K. J. Pieper, R. Martin, M. Tang, L. Walters, J. Parks, S. Roy, C. Devine, & M. A. Edwards, Evaluating water lead levels during the Flint water crisis. Environmental science & technology, 52 (2018) 8124–8132. https://doi.org/10.1021/acs.est.8b00791 [CrossRef] [PubMed] [Google Scholar]
- B. Pandey, M. Agrawal, & S. Singh, Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5 (2014) 79–86. https://doi.org/10.5094/APR.2014.010 [CrossRef] [Google Scholar]
- M. Megasari, P. Wahyono, R. Latifa, L. Waluyo, A. Fauzi, & D. Setyawan, Lead (Pb) level of fresh and smoked mackerel tuna (Euthynnus affinis) in Tuban, Indonesia. IOP Conference Series: Earth and Environmental Science (2019), p. 012032. https://doi.org/10.1088/1755-1315/276/1/012032 [CrossRef] [Google Scholar]
- L. H. Mason, J. P. Harp, & D. Y. Han, Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Research International, (2014) 1–8. https://doi.org/10.1155/2014/840547 [Google Scholar]
- V. Karri, M. Schuhmacher, & V. Kumar, Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environmental Toxicology and Pharmacology, 48 (2016) 203–213. https://doi.org/10.1016/j.etap.2016.09.016 [CrossRef] [PubMed] [Google Scholar]
- X. Zeng, X. Xu, Q. Qin, K. Ye, W. Wu, & X. Huo, Heavy metal exposure has adverse effects on the growth and development of preschool children. Environmental Geochemistry and Health, 41 (2019) 309–321. https://doi.org/10.1007/s10653-018-0114-z [CrossRef] [PubMed] [Google Scholar]
- K. E. Smith & S. D. Pollak, Early life stress and development: potential mechanisms for adverse outcomes. Journal of Neurodevelopmental Disorders, 12 (2020) 34. https://doi.org/10.1186/s11689-020-09337-y [CrossRef] [PubMed] [Google Scholar]
- S. Hou, L. Yuan, P. Jin, B. Ding, N. Qin, L. Li, X. Liu, Z. Wu, G. Zhao, & Y. Deng, A clinical study of the effects of lead poisoning on the intelligence and neurobehavioral abilities of children. Theoretical Biology and Medical Modelling, 10 (2013) 13. https://doi.org/10.1186/1742-4682-10-13 [CrossRef] [Google Scholar]
- X. Lu, X. Xu, Y. Zhang, Y. Zhang, C. Wang, & X. Huo, Elevated inflammatory Lp-PLA2 and IL-6 link e-waste Pb toxicity to cardiovascular risk factors in preschool children. Environmental Pollution, 234 (2018) 601–609. https://doi.org/10.1016/j.envpol.2017.11.094 [CrossRef] [Google Scholar]
- S. Dai, Z. Yin, G. Yuan, H. Lu, R. Jia, J. Xu, X. Song, L. Li, Y. Shu, X. Liang, C. He, C. Lv, & W. Zhang, Quantification of metallothionein on the liver and kidney of rats by subchronic lead and cadmium in combination. Environmental Toxicology and Pharmacology, 36 (2013) 1207–1216. https://doi.org/10.1016/j.etap.2013.10.003 [CrossRef] [PubMed] [Google Scholar]
- J. Vizuete, M. Pérez-López, M.P. Míguez-Santiyán, & D. Hernández-Moreno, Mercury (Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) in liver, kidney, and feathers of gulls: A review. In P. De Voogt, ed., Reviews of Environmental Contamination and Toxicology (Cham: Springer International Publishing, 2019), pp. 85–146. https://doi.org/10.1007/398_2018_16 [PubMed] [Google Scholar]
- M. A. Assi, M. N. M. Hezmee, A. W. Haron, M. Y. M. Sabri, & M. A. Rajion, The detrimental effects of lead on human and animal health. Veterinary world, 9 (2016) 660–671. https://doi.org/10.14202/vetworld.2016.660-671 [CrossRef] [PubMed] [Google Scholar]
- R. Bhateria & D. Jain, Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2 (2016) 161–173. https://doi.org/10.1007/s40899-015-0014-7 [CrossRef] [Google Scholar]
- R. G. Morgado, S. Loureiro, & M. N. González-Alcaraz, Changes in soil ecosystem structure and functions due to soil contamination. In A.C. Duarte, A. Cachada, & T. Rocha-Santos, eds., Soil Pollution (Elsevier, 2018), pp. 59–87. https://doi.org/10.1016/B978-0-12-849873-6.00003-0 [CrossRef] [Google Scholar]
- S. Mishra, R. N. Bharagava, N. More, A. Yadav, S. Zainith, S. Mani, & P. Chowdhary, Heavy metal contamination: An alarming threat to environment and human health. In R. Sobti, N. Arora, & R. Kothari, eds., Environmental Biotechnology: For Sustainable Future (Singapore: Springer Singapore, 2019), pp. 103–125. https://doi.org/10.1007/978-981-10-7284-0_5 [CrossRef] [Google Scholar]
- O. Jitar, C. Teodosiu, A. Oros, G. Plavan, & M. Nicoara, Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea. New Biotechnology, 32 (2015) 369–378. https://doi.org/10.1016/j.nbt.2014.11.004 [CrossRef] [PubMed] [Google Scholar]
- M. Aslam, A. Aslam, M. Sheraz, B. Ali, Z. Ulhassan, U. Najeeb, W. Zhou, & R. A. Gill, Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science, 11 (2021). https://doi.org/10.3389/fpls.2020.587785 [CrossRef] [Google Scholar]
- A. Kumar, A. Kumar, A.K. Chaturvedi, A.A. Shabnam, G. Subrahmanyam, R. Mondal, D.K. Gupta, S.K. Malyan, S.S. Kumar, S.A. Khan, & K.K. Yadav, Lead toxicity: Health hazards, Influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17 (2020) 2179. https://doi.org/10.3390/ijerph17072179 [CrossRef] [PubMed] [Google Scholar]
- A. C. Olufemi, A. Mji, & M. S. Mukhola, Potential health risks of lead exposure from early life through later life: Implications for public health education. International Journal of Environmental Research and Public Health, 19 (2022) 16006. https://doi.org/10.3390/ijerph192316006 [CrossRef] [PubMed] [Google Scholar]
- P. Mitra, S. Sharma, P. Purohit, & P. Sharma, Clinical and molecular aspects of lead toxicity: An update. Critical Reviews in Clinical Laboratory Sciences, 54 (2017) 506–528. https://doi.org/10.1080/10408363.2017.1408562 [CrossRef] [PubMed] [Google Scholar]
- D. Fatmawati, D. Khoiroh, S. Zubaidah, H. Susanto, M. Agustin, & A. Fauzi, Wing morphological changes of Drosophila melanogaster exposed with Lead in nine generations. AIP Conference Proceedings (AIP Publishing, 2022). [PubMed] [Google Scholar]
- R. A. Powell & G. Proulx, Trapping and marking terrestrial mammals for research: Integrating ethics, performance criteria, techniques, and common sense. ILAR Journal, 44 (2003) 259–276. https://doi.org/10.1093/ilar.44.4.259 [CrossRef] [PubMed] [Google Scholar]
- O. Van Cauwenbergh, A. Di Serafino, J. Tytgat, & A. Soubry, Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clinical Epigenetics, 12 (2020) 65. https://doi.org/10.1186/s13148-020-00845-1 [CrossRef] [PubMed] [Google Scholar]
- F. P. Fischer, R. A. Karge, Y. G. Weber, H. Koch, S. Wolking, & A. Voigt, Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Frontiers in Molecular Neuroscience, 16 (2023). https://doi.org/10.3389/fnmol.2023.1116000 [CrossRef] [Google Scholar]
- M. Yamaguchi & H. Yoshida, Drosophila as a model organism. Drosophila Models for Human Diseases, Advances in Experimental Medicine and Biology (Singapore: Springer Nature Singapore Pte Ltd, 2018), pp. 1–10. https://doi.org/10.1007/978-981-13-0529-0_1 [Google Scholar]
- X. Han, B. Geller, K. Moniz, P. Das, A. K. Chippindale, & V. K. Walker, Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Science of The Total Environment, 487 (2014) 822–829. https://doi.org/10.1016/j.scitotenv.2013.12.129 [CrossRef] [Google Scholar]
- A. Fauzi, S. Zubaidah, & H. Susanto, The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior? In A. Taufiq, H. Susanto, H. Nur, M. Aziz, C.-R. Chang, H. Lee, M. Diantoro, N. Mufti, N.A.N.N. Malek, I.C. Wang, D.T. Iskandar, G. Elbers, S. Sunaryono, S. Zubaidah, S. Sumari, A. Aulanni’am, A.B. Nandiyanto, I. Wibowo, & A.Y. Handaya, eds., AIP Conference Proceedings (Malang: AIP Publishing, 2020), pp. 0400141–0400147. https://doi.org/10.1063/5.0002429 [Google Scholar]
- D. Khoiroh, L. Hindun, D. Fatmawati, S. Zubaidah, H. Susanto, & A. Fauzi, Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? AIP Conference Proceedings (AIP Publishing, 2023), p. 020099. https://doi.org/10.1063/5.0111891 [CrossRef] [Google Scholar]
- S. Zhou, S. E. Luoma, G.E. St. Armour, E. Thakkar, T.F.C. Mackay, & R.R.H. Anholt, A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure. PLOS Genetics, 13 (2017) e1006907. https://doi.org/10.1371/journal.pgen.1006907 [CrossRef] [PubMed] [Google Scholar]
- Z.-H. Liu, J. Shang, L. Yan, T. Wei, L. Xiang, H.-L. Wang, J. Cheng, & G. Xiao, Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. Chemosphere, 243 (2020) 125428. https://doi.org/10.1016/j.chemosphere.2019.125428 [CrossRef] [PubMed] [Google Scholar]
- S. Narasimha, S. Kolly, M. B. Sokolowski, T. J. Kawecki, & R. K. Vijendravarma, Prepupal building behavior in Drosophila melanogaster and its evolution under resource and time constraints. PLOS ONE, 10 (2015) e0117280. https://doi.org/10.1371/journal.pone.0117280 [CrossRef] [PubMed] [Google Scholar]
- P. Welbergen & M. B. Sokolowski, Development time and pupation behavior in the Drosophila melanogaster subgroup (Diptera: Drosophilidae). Journal of Insect Behavior, 7 (1994) 263–277. https://doi.org/10.1007/BF01989734 [CrossRef] [Google Scholar]
- C. J. Reaume & M. B. Sokolowski, The nature of Drosophila melanogaster. Current Biology, 16 (2006) 623–628. https://doi.org/10.1016/j.cub.2006.07.042 [Google Scholar]
- H. V. B. Hirsch, G. Lnenicka, D. Possidente, B. Possidente, M. D. Garfinkel, L. Wang, X. Lu, & D. M. Ruden, Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Frontiers in genetics, 3 (2012) 68. https://doi.org/10.3389/fgene.2012.00068 [PubMed] [Google Scholar]
- S. Perveen, S. Kumari, H. Raj, & S. Yasmin, Effects of sodium fluoride and Ocimum sanctum extract on the lifespan and climbing ability of Drosophila melanogaster. The Journal of Basic and Applied Zoology, 82 (2021) 32. https://doi.org/10.1186/s41936-021-00229-8 [Google Scholar]
- O. Shilpa, K. P. Anupama, A. Antony, & H. P. Gurushankara, Lead (Pb) induced oxidative stress as a aechanism to cause neurotoxicity in Drosophila melanogaster. Toxicology, 462 (2021) 152959. https://doi.org/10.1016/j.tox.2021.152959 [CrossRef] [PubMed] [Google Scholar]
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, & M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12 (2021). https://doi.org/10.3389/fphar.2021.643972 [CrossRef] [Google Scholar]
- Z. Chen, X. Huo, G. Chen, X. Luo, & X. Xu, Lead (Pb) exposure and heart failure risk. Environmental Science and Pollution Research, 28 (2021) 28833–28847. https://doi.org/10.1007/s11356-021-13725-9 [CrossRef] [PubMed] [Google Scholar]
- J. G. Paithankar, S. Saini, S. Dwivedi, A. Sharma, & D. K. Chowdhuri, Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262 (2021) 128350. https://doi.org/10.1016/j.chemosphere.2020.128350 [CrossRef] [PubMed] [Google Scholar]
- T. Sanders, Y. Liu, V. Buchner, & P. B. Tchounwou, Neurotoxic effects and biomarkers of lead exposure: A review. Reviews on Environmental Health, 24 (2009). https://doi.org/10.1515/REVEH.2009.24.1.15 [CrossRef] [Google Scholar]
- H. N. Mustafa & A. M. Hussein, Does allicin combined with vitamin B-complex have superior potentials than alpha-tocopherol alone in ameliorating lead acetate-induced Purkinje cell alterations in rats? An immunohistochemical and ultrastructural study. Folia Morphologica, 75 (2016) 76–86. https://doi.org/10.5603/FM.a2015.0076 [CrossRef] [PubMed] [Google Scholar]
- Climbro Team, Performance factors in sport climbing. (2020). https://climbro.com/2020/04/performance-factors-in-sport-climbing/ [Google Scholar]
- A. W. Sheel, Physiology of sport rock climbing. British Journal of Sports Medicine, 38 (2004) 355–359. https://doi.org/10.1136/bjsm.2003.008169 [CrossRef] [PubMed] [Google Scholar]
- M. Saaristo, T. Brodin, S. Balshine, M. G. Bertram, B. W. Brooks, S. M. Ehlman, E. S. McCallum, A. Sih, J. Sundin, B. B. M. Wong, & K. E. Arnold, Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proceedings of the Royal Society B: Biological Sciences, 285 (2018) 20181297. https://doi.org/10.1098/rspb.2018.1297 [CrossRef] [PubMed] [Google Scholar]
- K. Świacka, A. Michnowska, J. Maculewicz, M. Caban, & K. Smolarz, Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environmental Pollution, 273 (2021) 115891. https://doi.org/10.1016/j.envpol.2020.115891 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.