Open Access
Issue |
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/bioconf/202411701024 | |
Published online | 05 July 2024 |
- F. P. Fischer, R. A. Karge, Y. G. Weber, H. Koch, S. Wolking, & A. Voigt, Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Frontiers in Molecular Neuroscience, 16 (2023). https://doi.org/10.3389/fnmol.2023.1116000 [CrossRef] [Google Scholar]
- M. Yamaguchi & H. Yoshida, Drosophila as a model organism. Drosophila Models for Human Diseases, Advances in Experimental Medicine and Biology (Singapore: Springer Nature Singapore Pte Ltd, 2018), pp. 1–10. https://doi.org/10.1007/978-981-13-0529-0_1 [Google Scholar]
- A. Raj, P. Shah, & N. Agrawal, Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Scientific Reports, 7 (2017). https://doi.org/10.1038/s41598-017-15645-6 [Google Scholar]
- S.-H. Lee, H.-Y. Lee, E.-J. Lee, D. Khang, & K.-J. Min, Effects of carbon nanofiber on physiology of Drosophila. International Journal of Nanomedicine, 10 (2015) 3687–3697. https://doi.org/10.2147/IJN.S82637 [PubMed] [Google Scholar]
- P. K. Mishra, A. Ekielski, S. Mukherjee, S. Sahu, S. Chowdhury, M. Mishra, S. Talegaonkar, L. Siddiqui, & H. Mishra, Wood-based cellulose nanofibrils: Haemocompatibility and impact on the development and behaviour of drosophila melanogaster. Biomolecules, 9 (2019). https://doi.org/10.3390/biom9080363 [Google Scholar]
- S. Yan, N. Li, Y. Guo, Y. Chen, C. Ji, M. Yin, J. Shen, & J. Zhang, Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. Journal of Nanobiotechnology, 20 (2022). https://doi.org/10.1186/s12951-022-01705-1 [Google Scholar]
- K. Sood, J. Kaur, H. Singh, S. Kumar Arya, & M. Khatri, Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicology Reports, 6 (2019) 768–781. https://doi.org/10.1016/j.toxrep.2019.07.009 [CrossRef] [PubMed] [Google Scholar]
- N. Songvorawit, P. Phengphuang, & T. Khongkhieo, Fluorescent silica nanoparticles as an internal marker in fruit flies and their effects on survivorship and fertility. Scientific Reports, 12 (2022). https://doi.org/10.1038/s41598-022-24301-7 [CrossRef] [Google Scholar]
- G. Fedele, E. W. Green, E. Rosato, & C. P. Kyriacou, An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications, 5 (2014). https://doi.org/10.1038/ncomms5391 [CrossRef] [Google Scholar]
- J.-E. Bae, S. Bang, S. Min, S.-H. Lee, S.-H. Kwon, Y. Lee, Y.-H. Lee, J. Chung, & K.-S. Chae, Positive geotactic behaviors induced by geomagnetic field in Drosophila. Molecular Brain, 9 (2016). https://doi.org/10.1186/s13041-016-0235-1 [Google Scholar]
- A. R. McNeil, S. N. Jolley, A. A. Akinleye, M. Nurilov, Z. Rouzyi, A. J. Milunovich, M. C. Chambers, & A. F. Simon, Conditions affecting social space in Drosophila melanogaster. Journal of Visualized Experiments, 2015 (2015). https://doi.org/10.3791/53242 [Google Scholar]
- Y. Xia, W. Xu, S. Meng, N. K. H. Lim, W. Wang, & F.-D. Huang, An Efficient and Reliable Assay for Investigating the Effects of Hypoxia/Anoxia on Drosophila. Neuroscience Bulletin, 34 (2018) 397–402. https://doi.org/10.1007/s12264-017-0173-7 [CrossRef] [PubMed] [Google Scholar]
- B. Ugur, K. Chen, & H. J. Bellen, Drosophila tools and assays for the study of human diseases. Disease Models & Mechanisms, 9 (2016) 235–244. https://doi.org/10.1242/dmm.023762 [CrossRef] [PubMed] [Google Scholar]
- S. A. Deshpande, G. B. Carvalho, A. Amador, A. M. Phillips, S. Hoxha, K. J. Lizotte, & W. W. Ja, Quantifying Drosophila food intake: comparative analysis of current methodology. Nature Methods, 11 (2014) 535–540. https://doi.org/10.1038/nmeth.2899 [CrossRef] [PubMed] [Google Scholar]
- S. Manjila & G. Hasan, Flight and climbing assay for assessing motor functions in Drosophila. Bio-Protocol, 8 (2018) 1–9. https://doi.org/10.21769/bioprotoc.2742 [Google Scholar]
- W. Cao, L. Song, J. Cheng, N. Yi, L. Cai, F.-D. Huang, & M. Ho, An automated rapid iterative negative geotaxis assay for analyzing adult climbing behavior in a Drosophila model of neurodegeneration. Journal of Visualized Experiments, 2017 (2017). https://doi.org/10.3791/56507 [PubMed] [Google Scholar]
- A. E. Peppriell, J. T. Gunderson, I. N. Krout, D. Vorojeikina, & M. D. Rand, Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicology and Teratology, 88 (2021). https://doi.org/10.1016/j.ntt.2021.107037 [CrossRef] [PubMed] [Google Scholar]
- S. Ohiomokhare, F. Olaolorun, A. Ladagu, F. Olopade, M.-J. R. Howes, E. Okello, J. Olopade, & P.L. Chazot, The pathopharmacological interplay between vanadium and iron in parkinson’s disease models. International Journal of Molecular Sciences, 21 (2020) 1–15. https://doi.org/10.3390/ijms21186719 [Google Scholar]
- Q. Wu, X. Du, X. Feng, H. Cheng, Y. Chen, C. Lu, M. Wu, & H. Tong, Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. Ecotoxicology and Environmental Safety, 225 (2021). https://doi.org/10.1016/j.ecoenv.2021.112739 [Google Scholar]
- T. D. Algarve, C. E. Assmann, T. Aigaki, & I. B. M. da Cruz, Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster. Drug and Chemical Toxicology, 43 (2020) 255–265. https://doi.org/10.1080/01480545.2018.1485689 [CrossRef] [PubMed] [Google Scholar]
- Y. Zhang, M. B. Wolosker, Y. Zhao, H. Ren, & B. Lemos, Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Science of the Total Environment, 744 (2020). https://doi.org/10.1016/j.scitotenv.2020.140979 [Google Scholar]
- A. O. Abolaji, J. P. Kamdem, T. H. Lugokenski, E. O. Farombi, D. O. Souza, T. L. da Silva Loreto, & J.B.T. Rocha, Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biology, 5 (2015) 328–339. https://doi.org/10.1016/j.redox.2015.06.001 [CrossRef] [PubMed] [Google Scholar]
- O. Ibraheem, T. A. Oyewole, A. Adedara, A. O. Abolaji, O. M. Ogundipe, J. Akinyelu, C. T. Eze, S. Albogami, S. S. Alotaibi, O. S. Adeyemi, G.E.-S. Batiha, M. Alorabi, & M. De Waard, Ackee (Blighia sapida K.D. Koenig) Leaves and Arils Methanolic Extracts Ameliorate CdCl2-Induced Oxidative Stress Biomarkers in Drosophila melanogaster. Oxidative Medicine and Cellular Longevity, 2022 (2022). https://doi.org/10.1155/2022/3235031 [CrossRef] [Google Scholar]
- J. Harbottle, P. Strangward, C. Alnuamaani, S. Lawes, S. Patel, & A. Prokop, Making research fly in schools: Drosophila as a powerful modern tool for teaching biology. School Science Review, 97 (2016) 18–22. [Google Scholar]
- A. K. Lima, H. Dhillon, & A. R. Dillman, ShK-Domain-Containing Protein from a Parasitic Nematode Modulates Drosophila melanogaster Immunity. Pathogens, 11 (2022). https://doi.org/10.3390/pathogens11101094 [Google Scholar]
- M. R. Poetini, E. A. S. Musachio, S. M. Araujo, F. P. Almeida, M. M. M. Dahleh, V. C. Bortolotto, D. E. Janner, F. C. Pinheiro, B. P. Ramborger, R. Roehrs, D. La Rosa Novo, M.F. Mesko, G.P. Guerra, & M. Prigol, Iron overload during the embryonic period develops hyperactive like behavior and dysregulation of biogenic amines in Drosophila melanogaster. Developmental Biology, 475 (2021) 80–90. https://doi.org/10.1016/j.ydbio.2021.03.006 [CrossRef] [PubMed] [Google Scholar]
- M. P. Singh, R. Himalian, S. Shabir, A. A. Obaid, A. S. Alamri, C. M. Galanakis, S. K. Singh, & E. Vamanu, Protection of Phytoextracts against Rotenone-Induced Organismal Toxicities in Drosophila melanogaster via the Attenuation of ROS Generation. Applied Sciences (Switzerland), 12 (2022). https://doi.org/10.3390/app12199822 [Google Scholar]
- Z. Chen, F. Wang, D. Wen, & R. Mu, Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut. Ecotoxicology and Environmental Safety, 248 (2022). https://doi.org/10.1016/j.ecoenv.2022.114285 [CrossRef] [PubMed] [Google Scholar]
- T. O. Johnson, A. O. Abolaji, S. Omale, I. Y. Longdet, R. J. Kutshik, B. O. Oyetayo, A. E. Adegboyega, & A. Sagay, Benzo[a]pyrene and Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced locomotor and reproductive senescence and altered biochemical parameters of oxidative damage in Canton-S Drosophila melanogaster. Toxicology Reports, 8 (2021) 571–580. https://doi.org/10.1016/j.toxrep.2021.03.001 [CrossRef] [PubMed] [Google Scholar]
- M. D. Rand, J. M. Tennessen, T. F. C. Mackay, & R. R. H. Anholt, Perspectives on the Drosophila melanogaster model for advances in toxicological science. Current Protocols, 3 (2023). https://doi.org/10.1002/cpz1.870 [Google Scholar]
- L. J. Sudmeier, S. P. Howard, & B. Ganetzky, A Drosophila model to investigate the neurotoxic side effects of radiation exposure. DMM Disease Models and Mechanisms, 8 (2015) 669–677. https://doi.org/10.1242/dmm.019786 [CrossRef] [PubMed] [Google Scholar]
- J. Patocka, R. Wu, E. Nepovimova, M. Valis, W. Wu, & K. Kuca, Chemistry and toxicology of major bioactive substances in inocybe mushrooms. International Journal of Molecular Sciences, 22 (2021) 2218. https://doi.org/10.3390/ijms22042218 [CrossRef] [PubMed] [Google Scholar]
- G. J. Myatt, E. Ahlberg, Y. Akahori, D. Allen, A. Amberg, L. T. Anger, A. Aptula, S. Auerbach, L. Beilke, P. Bellion, R. Benigni, J. Bercu, E. D. Booth, D. Bower, A. Brigo, N. Burden, Z. Cammerer, M. T. D. Cronin, K. P. Cross, L. Custer, M. Dettwiler, K. Dobo, K. A. Ford, M. C. Fortin, S. E. Gad-McDonald, N. Gellatly, V. Gervais, K. P. Glover, S. Glowienke, J. Van Gompel, S. Gutsell, B. Hardy, J. S. Harvey, J. Hillegass, M. Honma, J.-H. Hsieh, C.-W. Hsu, K. Hughes, C. Johnson, R. Jolly, D. Jones, R. Kemper, M. O. Kenyon, M. T. Kim, N. L. Kruhlak, S. A. Kulkarni, K. Kümmerer, P. Leavitt, B. Majer, S. Masten, S. Miller, J. Moser, M. Mumtaz, W. Muster, L. Neilson, T. I. Oprea, G. Patlewicz, A. Paulino, E. Lo Piparo, M. Powley, D. P. Quigley, M. V. Reddy, A.-N. Richarz, P. Ruiz, B. Schilter, R. Serafimova, W. Simpson, L. Stavitskaya, R. Stidl, D. Suarez-Rodriguez, D.T. Szabo, A. Teasdale, A. Trejo-Martin, J.-P. Valentin, A. Vuorinen, B.A. Wall, P. Watts, A.T. White, J. Wichard, K.L. Witt, A. Woolley, D. Woolley, C. Zwickl, & C. Hasselgren, In silico toxicology protocols. Regulatory Toxicology and Pharmacology, 96 (2018) 1–17. https://doi.org/10.1016/j.yrtph.2018.04.014 [CrossRef] [PubMed] [Google Scholar]
- K. G. Hales, C. A. Korey, A. M. Larracuente, & D. M. Roberts, Genetics on the fly: A primer on the drosophila model system. Genetics, 201 (2015) 815–842. https://doi.org/10.1534/genetics.115.183392 [CrossRef] [PubMed] [Google Scholar]
- F. Liguori, U. B. Pandey, & F. A. Digilio, Editorial: Drosophila as a model to study neurodegenerative diseases. Frontiers in neuroscience, 17 (2023) 1275253. https://doi.org/10.3389/fnins.2023.1275253 [CrossRef] [PubMed] [Google Scholar]
- D. P. Snustad & M. J. Simmons, Principles of genetics, 7th ed (Wiley, 2015). [Google Scholar]
- D. Fatmawati, D. Khoiroh, S. Zubaidah, H. Susanto, M. Agustin, & A. Fauzi, Wing morphological changes of Drosophila melanogaster exposed with Lead in nine generations. AIP Conference Proceedings (AIP Publishing, 2022). [PubMed] [Google Scholar]
- D. Khoiroh, L. Hindun, D. Fatmawati, S. Zubaidah, H. Susanto, & A. Fauzi, Drosophila melanogaster behavior study: Does plumbum affect pupation and climbing ability of imago? AIP Conference Proceedings (AIP Publishing, 2023), p. 020099. https://doi.org/10.1063/5.0111891 [CrossRef] [Google Scholar]
- O. Ibraheem, D. Bankole, A. Adedara, A. O. Abolaji, T. H. Fatoki, J. M. Ajayi, & C. T. Eze, Methanolic leaves and arils extracts of ackee (Blighia sapida) plant ameliorate mercuric chloride-induced oxidative stress in drosophila melanogaster. Biointerface Research in Applied Chemistry, 11 (2021) 7528–7542. https://doi.org/10.33263/BRIAC111.75287542 [Google Scholar]
- A. E. Peppriell, J. T. Gunderson, D. Vorojeikina, & M. D. Rand, Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology, 443 (2020). https://doi.org/10.1016/j.tox.2020.152561 [CrossRef] [PubMed] [Google Scholar]
- J. T. Gunderson, A. E. Peppriell, I. N. Krout, D. Vorojeikina, & M. D. Rand, Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicological Sciences, 184 (2021) 236–251. https://doi.org/10.1093/toxsci/kfab114 [CrossRef] [PubMed] [Google Scholar]
- Z. Alasmary, T. Todd, G. M. Hettiarachchi, T. Stefanovska, V. Pidlisnyuk, K. Roozeboom, L. Erickson, L. Davis, & O. Zhukov, Effect of soil treatments and amendments on the nematode community under miscanthus growing in a lead contaminated military site. Agronomy, 10 (2020) 1727. https://doi.org/10.3390/agronomy10111727 [CrossRef] [Google Scholar]
- J. J. Clark & A. C. Knudsen, Extent, characterization, and sources of soil lead contamination in small-urban residential neighborhoods. Journal of Environmental Quality, 42 (2013) 1498–1506. https://doi.org/10.2134/jeq2013.03.0100 [CrossRef] [PubMed] [Google Scholar]
- E. Obeng-Gyasi, Sources of lead exposure in various countries. Reviews on Environmental Health, 34 (2019) 25–34. https://doi.org/10.1515/reveh-2018-0037 [CrossRef] [PubMed] [Google Scholar]
- M. M. Onakpa, A. A. Njan, & O. C. Kalu, A review of heavy metal contamination of food crops in Nigeria. Annals of global health, 84 (2018) 488–494. https://doi.org/10.29024/aogh.2314 [CrossRef] [PubMed] [Google Scholar]
- A. Fauzi, S. Zubaidah, & H. Susanto, The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior? In A. Taufiq, H. Susanto, H. Nur, M. Aziz, C.-R. Chang, H. Lee, M. Diantoro, N. Mufti, N.A.N.N. Malek, I.C. Wang, D.T. Iskandar, G. Elbers, S. Sunaryono, S. Zubaidah, S. Sumari, A. Aulanni’am, A.B. Nandiyanto, I. Wibowo, & A.Y. Handaya, eds., AIP Conference Proceedings (Malang: AIP Publishing, 2020), pp. 0400141–0400147. https://doi.org/10.1063/5.0002429 [Google Scholar]
- M. E. Slocumb, J. M. Regalado, M. Yoshizawa, G. G. Neely, P. Masek, A. G. Gibbs, & A. C. Keene, Enhanced sleep is an evolutionarily adaptive response to starvation stress in Drosophila. PLOS ONE, 10 (2015) e0131275. https://doi.org/10.1371/journal.pone.0131275 [CrossRef] [PubMed] [Google Scholar]
- M. F. Schou, J. Bechsgaard, J. Muñoz, & T. N. Kristensen, Genome-wide regulatory deterioration impedes adaptive responses to stress in inbred populations of Drosophila melanogaster. Evolution, 72 (2018) 1614–1628. https://doi.org/10.1111/evo.13497 [CrossRef] [Google Scholar]
- Climbro Team, Performance factors in sport climbing. (2020). https://climbro.com/2020/04/performance-factors-in-sport-climbing/ [Google Scholar]
- A. W. Sheel, Physiology of sport rock climbing. British Journal of Sports Medicine, 38 (2004) 355–359. https://doi.org/10.1136/bjsm.2003.008169 [CrossRef] [PubMed] [Google Scholar]
- S. Bahadorani & A. J. Hilliker, Biological and behavioral effects of heavy metals in Drosophila melanogaster adults and larvae. Journal of Insect Behavior, 22 (2009) 399–411. https://doi.org/10.1007/s10905-009-9181-4 [CrossRef] [Google Scholar]
- K. P. Nanda & H. Firdaus, Dietary cadmium induced declined locomotory and reproductive fitness with altered homeostasis of essential elements in Drosophila melanogaster.Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 255 (2022) 109289. https://doi.org/10.1016/j.cbpc.2022.109289 [CrossRef] [Google Scholar]
- F. A. Al-Momani & A.M. Massadeh, Effect of different heavy-metal concentrations on Drosophila melanogaster larval growth and development. Biological Trace Element Research, 108 (2005) 271–278. https://doi.org/10.1385/BTER:108:1-3:271 [CrossRef] [PubMed] [Google Scholar]
- L. Bonilla-Ramirez, M. Jimenez-Del-Rio, & C. Velez-Pardo, Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism. BioMetals, 24 (2011) 1045–1057. https://doi.org/10.1007/s10534-011-9463-0 [CrossRef] [PubMed] [Google Scholar]
- W. M. De Coen & C. R. Janssen, The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. Journal of Aquatic Ecosystem Stress and Recovery, 6 (1997) 43–55. https://doi.org/10.1023/A:1008228517955 [CrossRef] [Google Scholar]
- Y. Ma, M. C. Dias, & H. Freitas, Drought and salinity stress responses and microbeinduced tolerance in plants. Frontiers in Plant Science, 11 (2020). https://doi.org/10.3389/fpls.2020.591911 [Google Scholar]
- T. C. Salzman, A. L. McLaughlin, D. F. Westneat, & P. H. Crowley, Energetic tradeoffs and feedbacks between behavior and metabolism influence correlations between pace-of-life attributes. Behavioral Ecology and Sociobiology, 72 (2018) 54. https://doi.org/10.1007/s00265-018-2460-3 [CrossRef] [Google Scholar]
- C. K. R. Willis, Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integrative and Comparative Biology, 57 (2017) 1214–1224. https://doi.org/10.1093/icb/icx087 [CrossRef] [PubMed] [Google Scholar]
- N. Singh & B. Sharma, On the mechanisms of heavy metal-induced neurotoxicity: Amelioration by plant products. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2021), pp. 743–751. https://doi.org/10.1007/s40011-021-01272-9 [Google Scholar]
- M. Wu, Y. Shu, & Y. Wang, Exposure to mixture of heavy metals and muscle strength in children and adolescents: A population-based study. Environmental Science and Pollution Research, 29 (2022) 60269–60277. https://doi.org/10.1007/s11356-022-19916-2 [CrossRef] [PubMed] [Google Scholar]
- A. N. Spierer, D. Yoon, C.-T. Zhu, & D. M. Rand, FreeClimber: Automated quantification of climbing performance in Drosophila. Journal of Experimental Biology, (2020). https://doi.org/10.1242/jeb.229377 [Google Scholar]
- G. Heinemeyer, M. Jantunen, & P. Hakkinen, The practice of consumer exposure assessment (Springer International Publishing, 2020). [Google Scholar]
- K. Rehman, F. Fatima, I. Waheed, & M. S. H. Akash, Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119 (2018) 157–184. https://doi.org/10.1002/jcb.26234 [CrossRef] [PubMed] [Google Scholar]
- N. Liu, Y. Peng, X. Zhong, Z. Ma, S. He, Y. Li, W. Zhang, Z. Gong, & Z. Yao, Effects of exposure to low-dose ionizing radiation on changing platelets: A prospective cohort study.Environmental Health and Preventive Medicine, 26 (2021) 14. https://doi.org/10.1186/s12199-021-00939-z [CrossRef] [PubMed] [Google Scholar]
- T. A. Choi, S. V. Costes, & R. J. Abergel, Understanding the health impacts and risks of exposure to radiation. In J. Ahn, C. Carson, M. Jensen, K. Juraku, S. Nagasaki, & S. Tanaka, eds., Reflections on the Fukushima Daiichi Nuclear Accident (Cham: Springer International Publishing, 2015), pp. 259–281. https://doi.org/10.1007/978-3-319-12090-4_13 [Google Scholar]
- R. Dhakal, M. Yosofvand, M. Yavari, R. Abdulrahman, R. Schurr, N. Moustaid-Moussa, & H. Moussa, Review of biological effects of acute and chronic radiation exposure on Caenorhabditis elegans. Cells, 10 (2021) 1966. https://doi.org/10.3390/cells10081966 [CrossRef] [PubMed] [Google Scholar]
- R. Yahyapour, P. Amini, S. Rezapour, M. Cheki, A. Rezaeyan, B. Farhood, D. Shabeeb, A. E. Musa, H. Fallah, & M. Najafi, Radiation-induced inflammation and autoimmune diseases. Military Medical Research, 5 (2018) 9. https://doi.org/10.1186/s40779-018-0156-7 [CrossRef] [PubMed] [Google Scholar]
- B. A. Hollingsworth, D. R. Cassatt, A. L. DiCarlo, C. I. Rios, M. M. Satyamitra, T. A. Winters, & L. P. Taliaferro, Acute radiation syndrome and the microbiome: Impact and review. Frontiers in Pharmacology, 12 (2021). https://doi.org/10.3389/fphar.2021.643283 [CrossRef] [Google Scholar]
- H. Fukunaga & K. M. Prise, Non-uniform radiation-induced biological responses at the tissue level involved in the health risk of environmental radiation: a radiobiological hypothesis. Environmental Health, 17 (2018) 93. https://doi.org/10.1186/s12940-018-0444-4 [CrossRef] [PubMed] [Google Scholar]
- C. Jia, Q. Wang, X. Yao, & J. Yang, The role of DNA damage induced by low/high dose ionizing radiation in cell carcinogenesis. Exploratory Research and Hypothesis in Medicine, (2021). https://doi.org/10.14218/ERHM.2021.00020 [Google Scholar]
- J. Sia, R. Szmyd, E. Hau, & H. E. Gee, Molecular mechanisms of radiation-induced cancer cell death: A primer. Frontiers in Cell and Developmental Biology, 8 (2020). https://doi.org/10.3389/fcell.2020.00041 [Google Scholar]
- G. L. Russo, I. Tedesco, M. Russo, A. Cioppa, M. G. Andreassi, & E. Picano, Cellular adaptive response to chronic radiation exposure in interventional cardiologists. European Heart Journal, 33 (2012) 408–414. https://doi.org/10.1093/eurheartj/ehr263 [CrossRef] [PubMed] [Google Scholar]
- K. Kamiya, K. Ozasa, S. Akiba, O. Niwa, K. Kodama, N. Takamura, E. K. Zaharieva, Y. Kimura, & R. Wakeford, Long-term effects of radiation exposure on health. The Lancet, 386 (2015) 469–478. https://doi.org/10.1016/S0140-6736(15)61167-9 [CrossRef] [Google Scholar]
- K. Tanigawa, Case review of severe acute radiation syndrome from whole body exposure: concepts of radiation-induced multi-organ dysfunction and failure. Journal of Radiation Research, 62 (2021) i15–i20. https://doi.org/10.1093/jrr/rraa121 [CrossRef] [PubMed] [Google Scholar]
- D. Wodarz, R. Sorace, & N. L. Komarova, Dynamics of cellular responses to radiation. PLoS Computational Biology, 10 (2014) e1003513. https://doi.org/10.1371/journal.pcbi.1003513 [CrossRef] [PubMed] [Google Scholar]
- D. R. Ortega, D. F. G. Esquivel, T. B. Ayala, B. Pineda, S. Gómez Manzo, J. M. Quino, P. C. Mora, & V.P. de la Cruz, Cognitive impairment induced by lead exposure during lifespan: Mechanisms of lead neurotoxicity. Toxics, 9 (2021) 23. https://doi.org/10.3390/toxics9020023 [Google Scholar]
- J.-W. Lee, H. Choi, U.-K. Hwang, J.-C. Kang, Y. J. Kang, K. Il Kim, & J.-H. Kim, Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68 (2019) 101–108. https://doi.org/10.1016/j.etap.2019.03.010 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.