Open Access
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
Article Number 01045
Number of page(s) 11
Published online 05 July 2024
  • Sanjaya, E. H. et al. Potential of microalgae isolate kelp i (Brawijaya Museum pond) and isolate kelp IV (Selorejo reservoir) as biodiesel feedstock. AIP Conf. Proc. 2353, (2021). [Google Scholar]
  • da Rosa, M. D. H. et al. Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review. Energies vol. 16 at (2023). [CrossRef] [Google Scholar]
  • Al-zuhair, P. S. Y. P. S. Guest editorial : special issue on ‘“Microalgae biorefinery : current bottlenecks , challenges , and future directions ”’. Phytochem. Rev. 22, 829-831 (2023). [CrossRef] [Google Scholar]
  • Talebi, A. F. et al. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2, 258-267 (2013). [CrossRef] [Google Scholar]
  • Borowitzka, M. A. Biology of Microalgae. Microalgae in Health and Disease Prevention (Elsevier Inc., 2018).doi: 10.1016/B978-0-12-811405-6.00003-7. [Google Scholar]
  • Kalra, R., Gaur, S. & Goel, M. Journal of Water Process Engineering Microalgae bioremediation : A perspective towards wastewater treatment along with industrial carotenoids production. J. Water Process Eng. 101794 (2020)doi: 10.1016/j.jwpe.2020.101794. [Google Scholar]
  • Ramanan, R., Kim, B., Cho, D., Oh, H. & Kim, H. Algae -bacteria interactions : Evolution , ecology and emerging applications. Biotechnol. Adv. (2015)doi: 10.1016/j.biotechadv.2015.12.003. [Google Scholar]
  • Cho, D. et al. Bioresource Technology Enhancing microalgal biomass productivity by engineering a microalgal -bacterial community. Bioresour. Technol. 175, 578-585 (2015). [CrossRef] [Google Scholar]
  • Teplitski, M. & Rajamani, S. Signal and Nutrient Exchange in the Interactions Between Soil Algae and Bacteria. 413-426 (2011)doi: 10.1007/978-3-642-14512-4. [Google Scholar]
  • Kim, B., Ramanan, R., Cho, D., Oh, H. & Kim, H. ScienceDirect Role of Rhizobium , a plant growth promoting bacterium , in enhancing algal biomass through mutualistic interaction. Biomass and Bioenergy 69, 95-105 (2014). [CrossRef] [Google Scholar]
  • Hernandez, J., Luz, E., Rodriguez, D. J., Rodriguez, Y. & Bashan, Y. Original article Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing , plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur. J. Soil Biol. 45, 88-93 (2009). [CrossRef] [Google Scholar]
  • Nisa, I. K., Prabaningtyas, S., Lukiati, B. & Saptawati, R. T. The potential of amylase enzyme activity against bacteria isolated from several lakes in East Java , Indonesia. 22, 42-49 (2021). [Google Scholar]
  • Prabaningtyas, S. et al. Vertical Distribution of Bacteria in Various Lakes of East Java, Indonesia. J. Phys. Conf. Ser. 1093, (2018). [Google Scholar]
  • Nafisah, W., Prabaningtyas, S., Witjoro, A., Saptawati, R. T. & Rodiansyah, A. Exploration non-symbiotic nitrogen-fixing bacteria from several lakes in East Java , Indonesia. 23, 1752-1758 (2022). [Google Scholar]
  • Prabaningtyas, S. et al. The Influence of Dominant Bacteria from Various Lakes of East Java, Indonesia on Chlorella sp. Culture. IOP Conf. Ser. Earth Environ. Sci. 276, (2019). [Google Scholar]
  • Chilmawati, D. Penggunaan Media Kultur Yang Berbeda Terhadap Pertumbuhan Chlorella sp The Used of Different Culture Medium Effect on The Growth Of Chlorella Sp. 6, 71-78 (2010). [Google Scholar]
  • Hadiyanto, H., Azimatun Nur, M. M. & Hartanto, G. D. Cultivation of chlorella sp. As biofuel sources in palm oil mill effluent (POME). Int. J. Renew. Energy Dev. 1, 45-49 (2012). [CrossRef] [Google Scholar]
  • Yellow-Green Algae. Van Nostrand’s Scientific Encyclopedia at (2005). [Google Scholar]
  • Lirofiatillah et al. Effect of differences in the form of photobioreactor prototypes and aeration period on Chlorella sp. Cell growth in co-culture with bacteria. AIP Conf. Proc. 2231, (2020). [Google Scholar]
  • Xue, L. et al. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. J. Basic Microbiol. 58, 358-367 (2018). [Google Scholar]
  • Bajpai, R., Prokop, A. & Zappi, M. Algal biorefineries: Volume 1: Cultivation of cells and products. Algal Biorefineries Vol. 1 Cultiv. Cells Prod. 1-324 (2014)doi: 10.1007/978-94-007-7494-0. [Google Scholar]
  • Zhu, Y. et al. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis. Environ. Sci. Technol. 47, 7679-7687 (2013). [Google Scholar]
  • Kononova, S.V. & Nesmeyanova, M. A. Kononova2002. 67, 184-195 (2002). [Google Scholar]
  • Zhao, G. et al. The importance of bacteria in promoting algal growth in eutrophic lakes with limited available phosphorus. Ecol. Eng. 42, 107-111 (2012). [CrossRef] [Google Scholar]
  • Zhou, G., Jin, M., Cai, Y. & Zeng, R. Characterization of a thermostable and alkalistable α-amylase from deep-sea bacterium Flammeovirga pacifica. Int. J. Biol. Macromol. 80, 676-682 (2015). [CrossRef] [Google Scholar]
  • Sureshkumar, S., Jasmin, B., Mujeeb Rahiman, K. M. & Hatha Mohammed, A. A. Growth enhancement of micro algae, Chaetoceros calcitrans and Nannochloropsis oculata, using selected bacterial strains. Int.J.Curr.Microbiol.App.Sci 3, 352-359 (2014). [Google Scholar]
  • Sandhya, S. V., Preetha, K., Nair, A. V., Antony, M. L. & Vijayan, K. K. Isolation, characterisation and phylogenetic diversity of culturable bacteria associated with marine microalgae from saline habitats of south India. Aquat. Microb. Ecol. 79, 21-30 (2017). [CrossRef] [Google Scholar]
  • Compounds, A. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and. (2016)doi: 10.3390/md14050100. [Google Scholar]
  • Natrah, F. M. I., Bossier, P., Sorgeloos, P., Yusoff, F. M. & Defoirdt, T. Significance of microalgal-bacterial interactions for aquaculture. Rev. Aquac. 6, 48-61 (2014). [CrossRef] [Google Scholar]
  • Tanabe, Y. et al. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii. Sci. Rep. 5, 1-11 (2015). [Google Scholar]
  • Cho, D. H. et al. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191, 481-487 (2015). [Google Scholar]
  • Khan, M. I., Shin, J. H. & Kim, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17, 1-21 (2018). [Google Scholar]
  • Kouzuma, A. & Watanabe, K. Exploring the potential of algae/bacteria interactions. Curr. Opin. Biotechnol. 33, 125-129 (2015). [Google Scholar]
  • Dao, G. H. et al. Enhanced microalgae growth through stimulated secretion of indole acetic acid by symbiotic bacteria. Algal Res. 33, 345-351 (2018). [Google Scholar]
  • Shahid, A. et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ. 704, 135303 (2020). [Google Scholar]
  • Wang, W. et al. Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors. Bioresour. Technol. 170, 395-403 (2014). [Google Scholar]
  • Lin, T. S. & Wu, J. Y. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour. Technol. 184, 100-107 (2015). [Google Scholar]
  • Crofcheck, C. et al. Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. 2012, ASABE 2012 1, 532-549 (2012). [Google Scholar]
  • Yeh, K. L. & Chang, J. S. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 105, 120-127 (2012). [CrossRef] [Google Scholar]
  • Yang, F., Xiang, W., Li, T. & Long, L. Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Sci. Rep. 8, 1-11 (2018). [Google Scholar]
  • Ota, S. et al. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci. Rep. 6, 1-11 (2016). [CrossRef] [Google Scholar]
  • Atiku, H., Mohamed, R., Al-Gheethi, A., Wurochekke, A. & Kassim, A. H. M. Harvesting of microalgae biomass from the phycoremediation process of greywater. Environ. Sci. Pollut. Res. 23, 24624-24641 (2016). [CrossRef] [PubMed] [Google Scholar]
  • Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Ravishankar, G. A. & Ambati, R. R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 10, 1-19 (2021). [Google Scholar]
  • Dhas, A. & Babu, M. Effect of Different Culture Media for the Growth and Oil Yield in Selected Marine Microalgae. 31, 165-177. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.